Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(5): e16627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733112

RESUMO

Soil structure and aggregation are crucial for soil functionality, particularly under drought conditions. Saprobic soil fungi, known for their resilience in low moisture conditions, are recognized for their influence on soil aggregate dynamics. In this study, we explored the potential of fungal amendments to enhance soil aggregation and hydrological properties across different moisture regimes. We used a selection of 29 fungal isolates, recovered from soils treated under drought conditions and varying in colony density and growth rate, for single-strain inoculation into sterilized soil microcosms under either low or high moisture (≤-0.96 and -0.03 MPa, respectively). After 8 weeks, we assessed soil aggregate formation and stability, along with soil properties such as soil water content, water hydrophobicity, sorptivity, total fungal biomass and water potential. Our findings indicate that fungal inoculation altered soil hydrological properties and improved soil aggregation, with effects varying based on the fungal strains and soil moisture levels. We found a positive correlation between fungal biomass and enhanced soil aggregate formation and stabilization, achieved by connecting soil particles via hyphae and modifying soil aggregate sorptivity. The improvement in soil water potential was observed only when the initial moisture level was not critical for fungal activity. Overall, our results highlight the potential of using fungal inoculation to improve the structure of agricultural soil under drought conditions, thereby introducing new possibilities for soil management in the context of climate change.


Assuntos
Fungos , Microbiologia do Solo , Solo , Água , Solo/química , Fungos/crescimento & desenvolvimento , Água/química , Biomassa , Secas
2.
New Phytol ; 234(6): 1919-1928, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114015

RESUMO

Both plants and their associated microbiomes can respond strongly to anthropogenic environmental changes. These responses can be both ecological (e.g. a global change affecting plant demography or microbial community composition) and evolutionary (e.g. a global change altering natural selection on plant or microbial populations). As a result, global changes can catalyse eco-evolutionary feedbacks. Here, we take a plant-focused perspective to discuss how microbes mediate plant ecological responses to global change and how these ecological effects can influence plant evolutionary response to global change. We argue that the strong and functionally important relationships between plants and their associated microbes are particularly likely to result in eco-evolutionary feedbacks when perturbed by global changes and discuss how improved understanding of plant-microbe eco-evolutionary dynamics could inform conservation or even agriculture.


Assuntos
Evolução Biológica , Microbiota , Plantas
3.
Rev Argent Microbiol ; 46(4): 338-47, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-25576419

RESUMO

Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 µg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion.


Assuntos
Eucalyptus/microbiologia , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Raízes de Plantas/microbiologia
4.
Rev. argent. microbiol ; 46(4): 338-347, dic. 2014. graf, tab
Artigo em Espanhol | LILACS | ID: lil-734588

RESUMO

Se aislaron bacterias rizosféricas y endófitas a partir de rizósfera y tejidos de raíz de árboles de Eucalyptus nitens con el objetivo de evaluar su capacidad de promover el crecimiento en plántulas de la misma especie en condiciones de invernadero. Los aislamientos que incrementaron el crecimiento de las plántulas fueron identificados y caracterizados por su capacidad de producir ácido indolacético (AIA), solubilizar fosfato y expresar la 1-aminociclopropano-1-carboxilato (ACC) desaminasa. Los 105 aislamientos obtenidos fueron morfológicamente diferentes y solo 15 promovieron significativamente el crecimiento de plántulas de E. nitens. Los máximos incrementos observados fueron en el peso seco aéreo (142 %) y de la raíz (135 %); también aumentaron la altura de las plantas (50 %) y el largo de raíces (45 %) de las mismas. Las rizobacterias pertenecieron a los géneros Arthrobacter, Lysinibacillus, Rahnella y Bacillus. Los aislados identificados como A. phenanthrenivorans 21 y B. cereus 113 incrementaron la emergencia de E. nitens a los 12 días en un valor promedio de 3,15 veces con relación al control. R. aquatilis aislado 78 presentó la mayor producción de AIA (97,5 ± 2,87 μg/ml) en presencia de triptófano y el mayor índice de solubilización de fósforo (2,4). B. amyloliquefaciens aislado 60 fue positivo para la actividad ACC desaminasa. Los resultados obtenidos indican el potencial de las rizobacterias estudiadas como promotoras de emergencia y crecimiento de plántulas de E. nitens y su posible uso como inoculantes, ya que presentan más de un mecanismo de acción asociado a la promoción del crecimiento.


Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion.


Assuntos
Eucalyptus/microbiologia , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA