Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 248: 118278, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246297

RESUMO

Biomedical applications for various types of nanoparticles are emerging on a daily basis. Hence this research was performed to evaluate the antifungal (Aspergillus sp., Alternaria sp., Trichophyton sp., Candida sp., and Penicillium sp.), cytotoxicity (MCF10A cell lines), and antioxidant (DPPH) potential of Coleus aromaticus mediated and pre-characterized TiO2NPs were studied with respective standard methodology. Interestingly, the TiO2NPs exhibited significant antifungal activity on pathogenic fungal strains like Alternaria sp., Aspergillus sp. (31 ± 1.4), Penicillium sp. (31 ± 1.9) Trichophyton sp. (27 ± 2.1), and Candida sp. (26 ± 2.3) at high concentration (250 µg mL-1). However, the considerable levels of zone of inhibitions on fungal pathogens were recorded at 100 µg mL-1 of TiO2NPs as well as it was considerably greater than positive control. It also demonstrated dose based anti-inflammatory and antidiabetic activities. The plant-mediated TiO2NPs demonstrated a maximum DPPH scavenging efficiency of 91% at a dosage of 250 µg mL-1, comparable to the positive control's 94%. Furthermore, TiO2NPs at 100 µg mL-1 concentration did not cause cytotoxicity in MCF10A cell lines. At higher concentrations (250 µg mL-1), the nanoparticles showed the lowest cytotoxicity (17%). These findings suggest that C. aromaticus-mediated TiO2NPs have significant biomedical applications. However, in-vivo studies are needed to learn more about their (C. aromaticus-mediated TiO2NPs) potential biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antifúngicos , Antioxidantes , Aspergillus , Linhagem Celular , Nanopartículas Metálicas/química
2.
Environ Res ; 236(Pt 1): 116748, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37500041

RESUMO

Rapid and sustainable green technology was implemented in the current study to fabricated Ti nanoparticles. The vegetable ginger with the scientific name Zingiber officinale was employed as a biological source in the fabrication process of nanoparticles. The optical, structural, morphological, and particle size of the fabricated Ti nanoparticles were characterized with the help of UV-visible absorption spectrum, FTIR (Fourier Transform Infrared) spectrum, SEM (Scanning Electron Microscope) analysis, DLS (Dynamic Light Scattering) technique and XRD (X-ray powder diffraction) crystallography technique. The presence of spherical-shaped Ti nanoparticles with an average particle size of 93 nm was confirmed based on these characterization techniques. The anti-cancer properties of the Z. officinale mediated Ti nanoparticles were analyzed through MTT assay against cell lines MCF-7 (Human breast adenocarcinoma cell line) and concentration-dependent anti-cancer properties were observed. The anti-inflammatory capacity of the Z. officinale mediated Ti nanoparticles were examined through protein denaturation and nitric oxide scavenging assay. The antioxidant capacity of the Z. officinale mediated Ti nanoparticles were examined through DPPH assay, hydrogen peroxide radical scavenging assay, hydroxyl radical scavenging assay, and FRAP (Ferric Reducing Antioxidant Power) analysis. The fabricated Ti nanoparticles exhibited anti-inflammatory and antioxidant capacity in a concentration-dependent pattern.


Assuntos
Nanopartículas Metálicas , Zingiber officinale , Humanos , Antioxidantes/farmacologia , Zingiber officinale/química , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química , Titânio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA