RESUMO
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Assuntos
Placa Neural , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ectoderma/metabolismo , Crista Neural/metabolismo , Fatores de Transcrição Forkhead/metabolismoRESUMO
BACKGROUND: FOXI3 is a forkhead family transcription factor that is expressed in the progenitors of craniofacial placodes, epidermal placodes, and the ectoderm and endoderm of the pharyngeal arch region. Loss of Foxi3 in mice and pathogenic Foxi3 variants in dogs and humans cause a variety of craniofacial defects including absence of the inner ear, severe truncations of the jaw, loss or reduction in external and middle ear structures, and defects in teeth and hair. RESULTS: To allow for the identification, isolation, and lineage tracing of Foxi3-expressing cells in developing mice, we targeted the Foxi3 locus to create Foxi3GFP and Foxi3CreER mice. We show that Foxi3GFP mice faithfully recapitulate the expression pattern of Foxi3 mRNA at all ages examined, and Foxi3CreER mice can trace the derivatives of pharyngeal arch ectoderm and endoderm, the pharyngeal pouches and clefts that separate each arch, and the derivatives of hair and tooth placodes. CONCLUSIONS: Foxi3GFP and Foxi3CreER mice are new tools that will be of use in identifying and manipulating pharyngeal arch ectoderm and endoderm and hair and tooth placodes.
Assuntos
Ectoderma , Endoderma , Humanos , Cães , Animais , Camundongos , Ectoderma/metabolismo , Endoderma/metabolismo , Região Branquial/metabolismo , Cabelo/metabolismo , Epiderme/metabolismo , Fatores de Transcrição Forkhead/genéticaRESUMO
Defects in the middle ear ossicles - malleus, incus and stapes - can lead to conductive hearing loss. During development, neural crest cells (NCCs) migrate from the dorsal hindbrain to specific locations in pharyngeal arch (PA) 1 and 2, to form the malleus-incus and stapes, respectively. It is unclear how migratory NCCs reach their proper destination in the PA and initiate mesenchymal condensation to form specific ossicles. We show that secreted molecules sonic hedgehog (SHH) and bone morphogenetic protein 4 (BMP4) emanating from the pharyngeal endoderm are important in instructing region-specific NCC condensation to form malleus-incus and stapes, respectively, in mouse. Tissue-specific knockout of Shh in the pharyngeal endoderm or Smo (a transducer of SHH signaling) in NCCs causes the loss of malleus-incus condensation in PA1 but only affects the maintenance of stapes condensation in PA2. By contrast, knockout of Bmp4 in the pharyngeal endoderm or Smad4 (a transducer of TGFß/BMP signaling) in the NCCs disrupts NCC migration into the stapes region in PA2, affecting stapes formation. These results indicate that region-specific endodermal signals direct formation of specific middle ear ossicles.
Assuntos
Ossículos da Orelha/embriologia , Endoderma/embriologia , Endoderma/metabolismo , Crista Neural/citologia , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular , Sobrevivência Celular , Deleção de Genes , Proteínas Hedgehog , Bigorna/embriologia , Bigorna/metabolismo , Martelo/embriologia , Martelo/metabolismo , Camundongos , Modelos Biológicos , Crista Neural/embriologia , Crista Neural/metabolismo , Especificidade de Órgãos , Faringe/embriologia , Fenótipo , Estribo/embriologia , Estribo/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismoRESUMO
The mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss. In this review, we summarize studies describing the crucial roles played by signaling molecules such as sonic hedgehog, bone morphogenetic proteins, fibroblast growth factors, notch ligands, and chemokines during the differentiation of neural crest into the middle ear ossicles. In addition to these cell-extrinsic signals, we also discuss studies on the function of transcription factor genes such as Foxi3, Tbx1, Bapx1, Pou3f4, and Gsc in regulating the development and morphology of the middle ear ossicles.
Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Ossículos da Orelha/crescimento & desenvolvimento , Orelha Média/crescimento & desenvolvimento , Crista Neural/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Quimiocinas/metabolismo , Ossículos da Orelha/metabolismo , Orelha Média/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , HumanosRESUMO
BACKGROUND: The mammalian middle ear comprises a chain of three ossicles-the malleus, incus, and stapes-each of which has a unique morphology for efficiently transmitting sound information. In particular, the stapes, which is attached to the inner ear, is stirrup-shaped with a head and base connected by two crural arches, forming the stapedial foramen, through which the stapedial artery passes. However, how the stapes acquires this critical stirrup shape for association with the stapedial artery during development is not clear. RESULTS: C-X-C motif chemokine ligand 12 (CXCL12) is a chemoattractant essential for cellular movement and angiogenesis. In Cxcl12 -/- embryos, migration of neural crest cells into the prospective middle ear regions and their mesenchymal condensation to form the three ossicles proceed normally in correct alignment with each other and the inner ear. However, in the absence of CXCL12, the stapes loses its stirrup shape and instead exhibits a columnar shape lacking the crural arches and central hole. In addition, although the stapedial artery initially forms during early mesenchymal condensation of the stapes, it degenerates without CXCL12 function. CONCLUSION: CXCL12 plays an essential role in establishing the stirrup-shaped architecture of the stapes, possibly by maintaining the stapedial foramen and stapedial artery throughout development.
Assuntos
Quimiocina CXCL12/metabolismo , Orelha Média/embriologia , Embrião de Mamíferos/embriologia , Organogênese , Animais , Quimiocina CXCL12/genética , Orelha Média/citologia , Embrião de Mamíferos/citologia , Camundongos , Camundongos KnockoutRESUMO
Sound frequency discrimination begins at the organ of Corti in mammals and the basilar papilla in birds. Both of these hearing organs are tonotopically organized such that sensory hair cells at the basal (proximal) end respond to high frequency sound, whereas their counterparts at the apex (distal) respond to low frequencies. Sonic hedgehog (Shh) secreted by the developing notochord and floor plate is required for cochlear formation in both species. In mice, the apical region of the developing cochlea, closer to the ventral midline source of Shh, requires higher levels of Shh signaling than the basal cochlea farther away from the midline. Here, gain-of-function experiments using Shh-soaked beads in ovo or a mouse model expressing constitutively activated Smoothened (transducer of Shh signaling) show up-regulation of apical genes in the basal cochlea, even though these regionally expressed genes are not necessarily conserved between the two species. In chicken, these altered gene expression patterns precede morphological and physiological changes in sensory hair cells that are typically associated with tonotopy such as the total number of stereocilia per hair cell and gene expression of an inward rectifier potassium channel, IRK1, which is a bona fide feature of apical hair cells in the basilar papilla. Furthermore, our results suggest that this conserved role of Shh in establishing cochlear tonotopy is initiated early in development by Shh emanating from the notochord and floor plate.
Assuntos
Cóclea/metabolismo , Audição/fisiologia , Proteínas Hedgehog/metabolismo , Mecanotransdução Celular , Animais , Galinhas , Cóclea/fisiologia , Células Ciliadas Auditivas/metabolismo , Camundongos , Notocorda/metabolismo , Órgão Espiral/metabolismo , Órgão Espiral/fisiologia , Fenótipo , Transdução de Sinais , Especificidade da EspécieRESUMO
Pax3 mutations result in malformed inner ears in Splotch mutant mice and hearing loss in humans with Waardenburg's syndrome type I. In the inner ear, Pax3 is thought to be involved mainly in the development of neural crest. However, recent studies have shown that Pax3-expressing cells contribute extensively to multiple inner ear structures, some of which were considered to be derived from the otic epithelium. To examine the specific functions of Pax3 during inner ear development, fate mapping of Pax3 lineage was performed in the presence or absence of functional Pax3 proteins using Pax3(Cre) knock-in mice bred to Rosa26 reporter (R26R) line. ß-gal-positive cells were widely distributed in Pax3(Cre/+); R26R inner ears at embryonic day (E) 15.5, including the endolymphatic duct, common crus, cristae, maculae, cochleovestibular ganglion, and stria vascularis. In the absence of Pax3 in Pax3(Cre/Cre); R26R inner ears, ß-gal-positive cells disappeared from regions with melanocytes such as the stria vascularis of the cochlea and dark cells in the vestibule. Consistently, the expression of Dct, a melanoblast marker, was also absent in the mutant inner ears. However, when examined at E11.5, ß-gal positive cells were present in Pax3(Cre/Cre) mutant otocysts, whereas Dct expression was absent, suggesting that Pax3 lineage with a melanogenic fate migrated to the inner ear, yet failed to differentiate and survive without Pax3 function. Gross inner ear morphology was generally normal in Pax3(Cre/Cre) mutants, unless neural tube defects extended to the cranial region. Taken together, these results suggest that despite the extensive contribution of Pax3-expressing cells to multiple inner ear tissues, Pax3 function is required specifically for inner ear components with melanogenic fates.
Assuntos
Orelha Interna/anormalidades , Melanócitos/citologia , Fatores de Transcrição Box Pareados/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Orelha Interna/embriologia , Orelha Interna/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Perda Auditiva/genética , Humanos , Melanócitos/metabolismo , Camundongos , Mutação , Crista Neural/anormalidades , Crista Neural/embriologia , Crista Neural/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genéticaRESUMO
Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.
Assuntos
Síndrome de Goldenhar , Animais , Camundongos , Síndrome de Goldenhar/patologia , Assimetria Facial , Linhagem , Fatores de Transcrição ForkheadRESUMO
The mammalian inner ear is a complex organ responsible for balance and hearing. Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family of secreted proteins, has been shown to play important roles in several aspects of inner ear development, including dorsoventral axial specification, cochlear elongation, tonotopic patterning, and hair cell differentiation. Hh proteins initiate a downstream signaling cascade by binding to the Patched 1 (Ptch1) receptor. Recent studies have revealed that other types of co-receptors can also mediate Hh signaling, including growth arrest-specific 1 (Gas1), cell-adhesion molecules-related/down-regulated by oncogenes (Cdon), and biregional Cdon binding protein (Boc). However, little is known about the role of these Hh co-receptors in inner ear development. In this study, we examined the expression patterns of Gas1, Cdon, and Boc, as well as that of Ptch1, in the developing mouse inner ear from otocyst (embryonic day (E) 9.5) until birth and in the developing middle ear at E15.5. Ptch1, a readout of Hh signaling, was expressed in a graded pattern in response to Shh signaling throughout development. Expression patterns of Gas1, Cdon, and Boc differed from that of Ptch1, and each Hh co-receptor was expressed in specific cells and domains in the developing inner and middle ear. These unique and differential expression patterns of Hh co-receptors suggest their roles in mediating various time- and space-specific functions of Shh during ear development.