Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1082866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089472

RESUMO

Circadian clocks temporally organize behaviour and physiology of organisms with a rhythmicity of about 24 h. In Drosophila, the circadian clock is composed of mainly four clock genes: period (per), timeless (tim), Clock (Clk) and cycle (cyc) which constitutes the transcription-translation feedback loop. The circadian clock is further regulated via post-transcriptional and post-translational mechanisms among which microRNAs (miRNAs) are well known post-transcriptional regulatory molecules. Here, we identified and characterized the role of miRNA-277 (miR-277) expressed in the clock neurons in regulating the circadian rhythm. Downregulation of miR-277 in the pacemaker neurons expressing circadian neuropeptide, pigment dispersing factor (PDF) advanced the phase of the morning activity peak under 12 h light: 12 h dark cycles (LD) at lower light intensities and these flies exhibited less robust rhythms compared to the controls under constant darkness. In addition, downregulation of miR-277 in the PDF expressing neurons abolished the Clk gene transcript oscillation under LD. Our study points to the potential role of miR-277 in fine tuning the Clk expression and in maintaining the phase of the circadian rhythm in Drosophila.

2.
Chronobiol Int ; 38(9): 1244-1261, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34056966

RESUMO

The endogenous circadian timekeeping system drives ~24-h rhythms in gene expression and rhythmically coordinates the physiology, metabolism and behavior in a wide range of organisms. Regulation at various levels is important for the accurate functioning of this circadian timing system. The core circadian oscillator consists of an interlocked transcriptional-translational negative feedback loop (TTFL) that imposes a substantial delay between the accumulation of clock gene mRNA and its protein to generate 24-h oscillations. This TTFL mediated daily oscillation of clock proteins is further fine-tuned by post-translational modifications that regulate the clock protein stability, interaction with other proteins and subcellular localization. Emerging evidence from various studies indicates that besides TTFL and post-translational modifications, post-transcriptional regulation plays a key role in shaping the rhythmicity of mRNAs and to delay the accumulation of clock proteins in relation to their mRNAs. In this review, we summarize the current knowledge on the importance of post-transcriptional regulatory mechanisms such as splicing, polyadenylation, the role of RNA-binding proteins, RNA methylation and microRNAs in the context of shaping the circadian rhythmicity in Drosophila and mammals. In particular, we discuss microRNAs, an important player in post-transcriptional regulation of core-clock machinery, circadian neural circuit, clock input, and output pathways. Furthermore, we provide an overview of the microRNAs that exhibit diurnal rhythm in expression and their role in mediating rhythmic physiological processes.


Assuntos
Relógios Circadianos , Animais , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Drosophila , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA