RESUMO
Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis.
Assuntos
Diferenciação Celular , Neurogênese , Neurônios , Isoformas de RNA , Humanos , Neurogênese/genética , Diferenciação Celular/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Processamento Alternativo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Éxons/genéticaRESUMO
SUMMARY: Despite the continuous discovery of new transcript isoforms, fueled by the recent increase in accessibility and accuracy of long-read RNA sequencing data, functional differences between isoforms originating from the same gene often remain obscure. To address this issue and enable researchers to assess potential functional consequences of transcript isoform variation on the proteome, we developed IsoTV. IsoTV is a versatile pipeline to process, predict and visualize the functional features of translated transcript isoforms. Attributes such as gene and isoform expression, transcript composition and functional features are summarized in an easy-to-interpret visualization. IsoTV is able to analyze a variety of data types from all eukaryotic organisms, including short- and long-read RNA-seq data. Using Oxford Nanopore long read data, we demonstrate that IsoTV facilitates the understanding of potential protein isoform function in different cancer cell types. AVAILABILITY AND IMPLEMENTATION: IsoTV is available at https://github.molgen.mpg.de/MayerGroup/IsoTV, with the corresponding documentation at https://isotv.readthedocs.io/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Nanoporos , Software , Isoformas de Proteínas , Análise de Sequência de RNA , RNA-SeqRESUMO
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.