Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Ecol Appl ; 33(4): e2841, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36920234

RESUMO

Forest removal for livestock grazing is a striking example of human-caused state change leading to a stable, undesirable invasive grass system that is resistant to restoration efforts. Understanding which factors lead to resilience to the alternative grass state can greatly benefit managers when planning forest restoration. We address how thresholds of grass cover and seed rain might influence forest recovery in a restoration project on Hawai'i Island, USA. Since the 1980s, over 400,000 Acacia koa (koa) trees have been planted across degraded pasture, and invasive grasses still dominate the understory with no native woody-plant recruitment. Between this koa/grass matrix are remnant native Metrosideros polymorpha ('ohi'a) trees beneath which native woody plants naturally recruit. We tested whether there were threshold levels of native woody understory that accelerate recruitment under both tree species by monitoring seed rain at 40 trees (20 koa and 'ohi'a) with a range of native woody understory basal area (BA). We found a positive relationship between total seed rain (but not bird-dispersed seed rain) and native woody BA and a negative relationship between native woody BA and grass cover, with no indication of threshold dynamics. We also experimentally combined grass removal levels with seed rain density (six levels) of two common understory species in plots under koa (n = 9) and remnant 'ohi'a (n = 9). Few seedlings emerged when no grass was removed despite adding seeds at densities two to 75 times higher than naturally occurring. However, seedling recruitment increased two to three times once at least 50% of grass was removed. Existing survey data of naturally occurring seedlings also supported a threshold of grass cover below which seedlings were able to establish. Thus, removal of all grasses is not necessary to achieve system responses: Even moderate reductions (~50%) can increase rates of native woody recruitment. The nonlinear thresholds found here highlight how incremental changes to an inhibitory factor lead to limited restoration success until a threshold is crossed. The resources needed to fully eradicate an invasive species may be unwarranted for state change, making understanding where thresholds lie of the utmost importance to prioritize resources.


Assuntos
Florestas , Árvores , Humanos , Havaí , Ilhas , Plantas , Plântula , Sementes , Poaceae , Ecossistema
2.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841232

RESUMO

AIM: The objective of the work was to assess the effect of biostimulation with selected plant growth-promoting bacteria on growth and metabolite profile of Salicornia europaea. METHODS AND RESULTS: Salicornia europaea seeds were inoculated with different combinations of plant growth-promoting bacteria Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20. Plants germinated from inoculated seeds were grown either in laboratory conditions or in a saline crop field. Fresh and dry weight were determined at the end of the experiment, for biomass quantification. The microbiological quality of fresh shoots for human consumption as salad greens was assessed, and the persistence of the inoculated strains in the plant rhizosphere was confirmed by next-generation sequencing (Illumina) of the 16S rDNA gene. The primary metabolite profile of biostimulated plants was characterized by GC-TOF-MS.In laboratory conditions, inoculation with the two strains Br. casei EB3 and Ps. oryzihabitans RL18 caused the most significant increase in biomass production (fresh and dry weight), and caused a shift in the central metabolic pathways of inoculated plants toward amino acid biosynthesis. In the field experiment, no significant biostimulation effect was detected with any of the tested inoculants. Seed inoculation had no significant effect on the microbiological quality of the edible parts. The persistence of inoculants was confirmed in both experiments. CONCLUSIONS: Manipulation of the plant microbiome can trigger primary metabolic reconfiguration and modulate the plant metabolism while promoting plant growth.


Assuntos
Bactérias , Chenopodiaceae , Humanos , Desenvolvimento Vegetal , Sementes , Produtos Agrícolas , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo
3.
Mass Spectrom Rev ; 40(2): 126-157, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498921

RESUMO

Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Árvores/metabolismo , Eucalyptus/química , Eucalyptus/genética , Eucalyptus/metabolismo , Florestas , Genômica/métodos , Metaboloma , Pinus/química , Pinus/genética , Pinus/metabolismo , Quercus/química , Quercus/genética , Quercus/metabolismo , Estresse Fisiológico , Árvores/química , Árvores/genética
4.
Plant Cell Environ ; 45(2): 528-541, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773419

RESUMO

The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant-defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10-fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2-fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7-fold), no changes in primary metabolites, and 20 defence-related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.


Assuntos
Actinidia/fisiologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Actinidia/microbiologia , Imunidade Vegetal/fisiologia
5.
Ecol Appl ; 32(1): e02477, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657347

RESUMO

Trees can have large effects on soil nutrients in ways that alter succession, particularly in the case of nitrogen-(N)-fixing trees. In Hawai'i, forest restoration relies heavily on use of a native N-fixing tree, Acacia koa (koa), but this species increases soil-available N and likely facilitates competitive dominance of exotic pasture grasses. In contrast, Metrosideros polymorpha ('ohi'a), the dominant native tree in Hawai'i, is less often planted because it is slow growing; yet it is typically associated with lower soil N and grass biomass, and greater native understory recruitment. We experimentally tested whether it is possible to reverse high soil N under koa by adding 'ohi'a litter, using additions of koa litter or no litter as controls, over 2.5 yr. We then quantified natural litterfall and decomposition rates of 'ohi'a and koa litter to place litter additions in perspective. Finally, we quantified whether litter additions altered grass biomass and if this had effects on native outplants. Adding 'ohi'a litter increased soil carbon, but increased rather than decreased inorganic soil N pools. Contrary to expectations, koa litter decomposed more slowly than 'ohi'a, although it released more N per unit of litter. We saw no reduction in grass biomass due to 'ohi'a litter addition, and no change in native outplanted understory survival or growth. We conclude that the high N soil conditions under koa are difficult to reverse. However, we also found that outplanted native woody species were able to decrease exotic grass biomass over time, regardless of the litter environment, making this a better strategy for lowering exotic species impacts.


Assuntos
Solo , Árvores , Biomassa , Ecossistema , Florestas , Nitrogênio , Poaceae
6.
Nature ; 537(7618): 93-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27556951

RESUMO

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Assuntos
Biodiversidade , Fertilizantes , Pradaria , Plantas/classificação , Plantas/metabolismo , Biomassa , Alimentos , Luz , Plantas/efeitos da radiação , Poaceae/classificação , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
7.
Phytopathology ; 112(11): 2341-2350, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35731020

RESUMO

Dieback and mortality in wildland plant species due to climate change have been on the rise in recent decades, and latent fungal pathogens might play a significant role in these events. During a severe multiyear drought, canopy dieback associated with latent pathogens in the Botryosphaeriaceae (Bot) family was observed in stands of a dominant shrub species, big berry manzanita (Arctostaphylos glauca), across chaparral landscapes in California. These fungi are significant pathogens of woody agricultural species, especially in hosts experiencing stress, and have become a threat to economically important crops worldwide. However, little is known regarding their occurrence, distribution, and impact in wildland systems. We conducted a field survey of 300 A. glauca shrubs across an elevational gradient to identify Bot species infection as it relates to (i) A. glauca dieback severity and (ii) landscape variables associated with plant drought stress. Our results show that Bots are widely infecting A. glauca across the landscape, and there is a significant correlation between elevation and dieback severity. Dieback severity was significantly higher at lower elevations, suggesting that infected shrubs at lower elevations are at greater risk than those at higher elevations. Furthermore, two Bot species, Neofusicoccum australe and Botryosphaeria dothidea, were most frequently isolated, with N. australe being the most common and, based on haplotype analysis, likely the most recently introduced of the two. Our results confirm the wide distribution of latent Bot fungi in a wild shrubland system and provide valuable insight into areas of greatest risk for future shrub dieback and mortality. These findings could be particularly useful for informing future wildlands management strategies with regard to introduced latent pathogens.


Assuntos
Arctostaphylos , Frutas/microbiologia , Doenças das Plantas/microbiologia , Secas , Madeira
8.
Int Heart J ; 63(6): 1034-1040, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36372409

RESUMO

Cardiogenic shock (CS) is a condition associated with high morbidity and mortality. Our study aimed to perform a risk score for in-hospital mortality that allows for stratifying the risk of death in patients with CS.This is a retrospective analysis, which included 135 patients from a Spanish university hospital between 2011 and 2020. The Santiago Shock Score (S3) was created using clinical, analytical, and echocardiographic variables obtained at the time of admission.The in-hospital mortality rate was 41.5%, and acute coronary syndrome (ACS) was the responsible cause of shock in 60.7% of patients. Mitral regurgitation grade III-IV, age, ACS etiology, NT-proBNP, blood hemoglobin, and lactate at admission were included in the score. The S3 had good accuracy for predicting in-hospital mortality area under the receiver operating characteristic curve (AUC) 0.85 (95% confidence interval (CI) 0.78-0.90), higher than the AUC of the CardShock score, which was 0.74 (95% CI 0.66-0.83). Predictive power in a cohort of 131 patients with profound CS was similar to that of CardShock with an AUC of 0.601 (95% CI 0.496-0.706) versus an AUC of 0.558 (95% CI 0.453-0.664). Three risk categories were created according to the S3: low (scores 0-6), intermediate (scores 7-10), and high (scores 11-16) risks, with an observed mortality of 12.9%, 49.1%, and 87.5% respectively (P < 0.001).The S3 score had excellent predictive power for in-hospital mortality in patients with nonprofound CS. It could aid the initial risk stratification of patients and thus, guide treatment and clinical decision making in patients with CS.


Assuntos
Síndrome Coronariana Aguda , Choque Cardiogênico , Humanos , Choque Cardiogênico/terapia , Mortalidade Hospitalar , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Síndrome Coronariana Aguda/complicações , Síndrome Coronariana Aguda/diagnóstico , Prognóstico
9.
Am J Bot ; 108(8): 1343-1353, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415569

RESUMO

PREMISE: Plants rely on pools of internal nonstructural carbohydrates (NSCs: soluble sugars plus starch) to support metabolism, growth, and regrowth of tissues damaged from disturbance such as foliage herbivory. However, impacts of foliage herbivory on the quantity and composition of NSC pools in long-lived woody plants are currently unclear. We implemented a controlled defoliation experiment on mature Tamarix spp.-a dominant riparian woody shrub/tree that has evolved with intense herbivory pressure-to test two interrelated hypotheses: (1) Repeated defoliation disproportionately impacts aboveground versus belowground NSC storage. (2) Defoliation disproportionately impacts starch versus soluble sugar storage. METHODS: Hypotheses were tested by transplanting six Tamarix seedlings into each of eight cylinder mesocosms (2 m diameter, 1 m in depth). After 2.5 years, plants in four of the eight mesocosms were mechanically defoliated repeatedly over a single growing season, and all plants were harvested in the following spring. RESULTS: Defoliation had no impact on either above- or belowground soluble sugar pools. However, starch in defoliated plants dropped to 55% and 26% in stems and roots, respectively, relative to control plants, resulting in an over 2-fold higher soluble sugar to starch ratio in defoliated plants. CONCLUSIONS: The results suggest that defoliation occurring over a single growing season does not impact immediate plant functions such as osmoregulation, but depleted starch could limit future fitness, particularly where defoliation occurs over multiple years. These results improve our understanding of how woody plants cope with episodic defoliation caused by foliage herbivory and other disturbances.


Assuntos
Tamaricaceae , Folhas de Planta , Amido , Açúcares , Árvores
10.
Physiol Plant ; 172(2): 391-404, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32671841

RESUMO

Metabolic changes underpinning drought-induced variations in stem respiration (Rs ) are unknown. We measured Rs rates and metabolite and gene expression profiles in Ulmus minor Mill. and Quercus ilex L. seedlings subjected to increasing levels of drought stress to better understand how carbon, nitrogen and energy metabolism interact during drought. In both species, only plants showing extreme stress symptoms - i.e. negligible rates of leaf stomatal conductance and photosynthesis, and high stem dehydration (30-50% of maximum water storage) and contraction (50-150 µm week-1 ) - exhibited lower Rs rates than well-watered plants. Abundance of low-molecular weight sugars (e.g. glucose and fructose) and sugar alcohols (e.g. mannitol) increased with drought, at more moderate stress and to a higher extent in Q. ilex than U. minor. Abundance of amino acids increased at more severe stress, more abruptly, and to a higher extent in U. minor, coinciding with leaf senescence, which did not occur in Q. ilex. Organic acids changed less in response to drought: threonate and glycerate increased, and citrate decreased although slightly in both species. Transcripts of genes coding for enzymes of the Krebs cycle decreased in Q. ilex and increased in U. minor in conditions of extreme drought stress. The maintenance of Rs under severe growth and photosynthetic restrictions reveals the importance of stem mitochondrial activity in drought acclimation. The eventual decline in Rs diverts carbon substrates from entering the Krebs cycle that may help to cope with osmotic and oxidative stress during severe drought and to recover hydraulic functionality afterwards.


Assuntos
Secas , Quercus , Fotossíntese , Folhas de Planta , Quercus/genética , Taxa Respiratória , Água
11.
Am J Bot ; 107(8): 1136-1147, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32864741

RESUMO

PREMISE: Mortality events involving drought and pathogens in natural plant systems are on the rise due to global climate change. In Santa Barbara, California, United States, big berry manzanita (Arctostaphylos glauca) has experienced canopy dieback related to a multi-year drought and infection from fungal pathogens in the Botryosphaeriaceae family. A greenhouse experiment was conducted using Neofusicoccum australe to test the specific influences of drought and fungal infection on A. glauca. METHODS: A full factorial design was used to compare four treatment groups (drought + inoculation; drought - inoculation; watering + inoculation; and control: watering - inoculation). Data were collected for 10 weeks on stress symptoms, changes in leaf fluorescence and photosynthesis, and mortality. RESULTS: Results indicated significant effects of watering and inoculation treatments on net photosynthesis, dark-adapted fluorescence, and disease symptom severity (P < 0.05), and a strong correlation was found between physiological decline and visible stress (P < 0.0001). Mortality differed between treatments, with all groups except for the control experiencing mortality (43% mortality in drought - inoculation, 83% in watering - inoculation, and 100% in drought + inoculation). A Kaplan-Meier survival analysis showed drought + inoculation to have the least estimated survivorship compared to all other treatment groups. CONCLUSIONS: In addition to a possible synergistic interaction between drought and fungal infection in disease onset and mortality rates in A. glauca, these results indicate that young, non-drought-stressed plants are susceptible to mortality from N. australe infection, with important implications for the future of wildland shrub communities.


Assuntos
Arctostaphylos , Ascomicetos , Secas , Fotossíntese , Folhas de Planta
12.
Planta ; 249(5): 1417-1433, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30684038

RESUMO

MAIN CONCLUSIONS: Arabidopsis and Eutrema show similar stomatal sensitivity to drying soil. In Arabidopsis, larger metabolic adjustments than in Eutrema occurred, with considerable differences in the phytohormonal responses of the two species. Although plants respond to soil drying via a series of concurrent physiological and molecular events, drought tolerance differs greatly within the plant kingdom. While Eutrema salsugineum (formerly Thellungiella salsuginea) is regarded as more stress tolerant than its close relative Arabidopsis thaliana, their responses to soil water deficit have not previously been directly compared. To ensure a similar rate of soil drying for the two species, daily soil water depletion was controlled to 5-10% of the soil water content. While partial stomatal closure occurred earlier in Arabidopsis (Day 4) than Eutrema (from Day 6 onwards), thereafter both species showed similar stomatal sensitivity to drying soil. However, both targeted and untargeted metabolite analysis revealed greater response to drought in Arabidopsis than Eutrema. Early peaks in foliar phytohormone concentrations and different sugar profiles between species were accompanied by opposing patterns in the bioactive cytokinin profiles. Untargeted analysis showed greater metabolic adjustment in Arabidopsis with more statistically significant changes in both early and severe drought stress. The distinct metabolic responses of each species during early drought, which occurred prior to leaf water status declining, seemed independent of later stomatal closure in response to drought. The two species also showed distinct water usage, with earlier reduction in water consumption in Eutrema (Day 3) than Arabidopsis (Day 6), likely reflecting temporal differences in growth responses. We propose Arabidopsis as a promising model to evaluate the mechanisms responsible for stress-induced growth inhibition under the mild/moderate soil drying that crop plants are typically exposed to.


Assuntos
Arabidopsis/metabolismo , Brassicaceae/metabolismo , Secas , Proteínas de Plantas/metabolismo , Arabidopsis/fisiologia , Brassicaceae/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Análise Multivariada , Oxirredução , Proteínas de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia
13.
Nature ; 503(7477): 517-20, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24256723

RESUMO

Returning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors. However, few studies have followed invasions through time to ask whether ecosystem impacts and feedbacks persist. Here we return to woodland sites in Hawai'i Volcanoes National Park that were invaded by exotic C4 grasses in the 1960s, the ecosystem impacts of which were studied intensively in the 1990s. We show that positive feedbacks between exotic grasses and soil nitrogen cycling have broken down, but rather than facilitating native vegetation, the weakening feedbacks facilitate new exotic species. Data from the 1990s showed that exotic grasses increased nitrogen-mineralization rates by two- to fourfold, but were nitrogen-limited. Thus, the impacts of the invader created a positive feedback early in the invasion. We now show that annual net soil nitrogen mineralization has since dropped to pre-invasion levels. In addition, a seedling outplanting experiment that varied soil nitrogen and grass competition demonstrates that the changing impacts of grasses do not favour native species re-establishment. Instead, decreased nitrogen availability most benefits another aggressive invader, the nitrogen-fixing tree Morella faya. Long-term studies of invasions may reveal that ecosystem impacts and feedbacks shift over time, but that this may not benefit native species recovery.


Assuntos
Ecossistema , Espécies Introduzidas , Poaceae/fisiologia , Biomassa , Retroalimentação Fisiológica , Incêndios , Havaí , Nitrogênio/metabolismo , Fixação de Nitrogênio , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Plântula/crescimento & desenvolvimento , Solo/química , Especificidade da Espécie , Fatores de Tempo , Erupções Vulcânicas
14.
Physiol Plant ; 162(4): 394-408, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28984911

RESUMO

Drought-induced reduction of leaf gas exchange entails a complex regulation of the plant leaf metabolism. We used a combined molecular and physiological approach to understand leaf photosynthetic and respiratory responses of 2-year-old Quercus ilex seedlings to drought. Mild drought stress resulted in glucose accumulation while net photosynthetic CO2 uptake (Pn ) remained unchanged, suggesting a role of glucose in stress signaling and/or osmoregulation. Simple sugars and sugar alcohols increased throughout moderate-to-very severe drought stress conditions, in parallel to a progressive decline in Pn and the quantum efficiency of photosystem II; by contrast, minor changes occurred in respiration rates until drought stress was very severe. At very severe drought stress, 2-oxoglutarate dehydrogenase complex gene expression significantly decreased, and the abundance of most amino acids dramatically increased, especially that of proline and γ-aminobutyric acid (GABA) suggesting enhanced protection against oxidative damage and a reorganization of the tricarboxylic cycle acid cycle via the GABA shunt. Altogether, our results point to Q. ilex drought tolerance being linked to signaling and osmoregulation by hexoses during early stages of drought stress, and enhanced protection against oxidative damage by polyols and amino acids under severe drought stress.


Assuntos
Dióxido de Carbono/metabolismo , Secas , Quercus/metabolismo , Aminobutiratos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Prolina/metabolismo , Quercus/fisiologia
15.
Ecol Lett ; 20(10): 1337-1350, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834087

RESUMO

Boom-bust dynamics - the rise of a population to outbreak levels, followed by a dramatic decline - have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom-bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom-bust dynamics and provide specific suggestions for improving the application of the boom-bust concept. Boom-bust dynamics can arise from many causes, some closely associated with invasions, but others occurring across a wide range of ecological settings, especially when environmental conditions are changing rapidly. As a result, it is difficult to infer cause or predict future trajectories merely by observing the dynamic. We use tests with simulated data to show that a common metric for detecting and describing boom-bust dynamics, decline from an observed peak to a subsequent trough, tends to severely overestimate the frequency and severity of busts, and should be used cautiously if at all. We review and test other metrics that are better suited to describe boom-bust dynamics. Understanding the frequency and importance of boom-bust dynamics requires empirical studies of large, representative, long-term data sets that use clear definitions of boom-bust, appropriate analytical methods, and careful interpretations.


Assuntos
Ecologia , Espécies Introduzidas , Dinâmica Populacional
16.
Mass Spectrom Rev ; 35(5): 620-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25589422

RESUMO

Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.


Assuntos
Espectrometria de Massas , Metabolômica , Plantas , Aminoácidos , Metaboloma
17.
Plant Physiol ; 170(1): 43-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26553649

RESUMO

Based on enzyme activity assays and metabolic responses to waterlogging of the legume Lotus japonicus, it was previously suggested that, during hypoxia, the tricarboxylic acid cycle switches to a noncyclic operation mode. Hypotheses were postulated to explain the alternative metabolic pathways involved, but as yet, a direct analysis of the relative redistribution of label through the corresponding pathways was not made. Here, we describe the use of stable isotope-labeling experiments for studying metabolism under hypoxia using wild-type roots of the crop legume soybean (Glycine max). [(13)C]Pyruvate labeling was performed to compare metabolism through the tricarboxylic acid cycle, fermentation, alanine metabolism, and the γ-aminobutyric acid shunt, while [(13)C]glutamate and [(15)N]ammonium labeling were performed to address the metabolism via glutamate to succinate. Following these labelings, the time course for the redistribution of the (13)C/(15)N label throughout the metabolic network was evaluated with gas chromatography-time of flight-mass spectrometry. Our combined labeling data suggest the inhibition of the tricarboxylic acid cycle enzyme succinate dehydrogenase, also known as complex II of the mitochondrial electron transport chain, providing support for the bifurcation of the cycle and the down-regulation of the rate of respiration measured during hypoxic stress. Moreover, up-regulation of the γ-aminobutyric acid shunt and alanine metabolism explained the accumulation of succinate and alanine during hypoxia.


Assuntos
Isótopos de Carbono/metabolismo , Glycine max/metabolismo , Isótopos de Nitrogênio/metabolismo , Oxigênio/metabolismo , Respiração Celular , Ciclo do Ácido Cítrico , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo/métodos , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Glycine max/fisiologia , Succinato Desidrogenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
18.
Oecologia ; 181(1): 137-48, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26852312

RESUMO

Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future.


Assuntos
Secas , Pinus/fisiologia , Água/fisiologia , Tempo (Meteorologia) , California , Florestas , Modelos Biológicos , Estações do Ano , Árvores/fisiologia
19.
Ecology ; 96(9): 2510-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594707

RESUMO

Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.


Assuntos
Biodiversidade , Pradaria , Quercus/fisiologia , Árvores/fisiologia , California , Monitoramento Ambiental , Especificidade da Espécie , Fatores de Tempo
20.
Ecology ; 96(10): 2643-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649386

RESUMO

Despite obvious impacts of nonnative species in many ecosystems, the long-term outcome of competition between native and exotic species often remains unclear. Demographic models can resolve the outcome of competition between native and exotic species and provide insight into conditions favoring exclusion vs. coexistence. California grasslands are one of the most heavily invaded ecosystems in North America. Although California native perennial bunchgrasses are thought to be restricted to a fraction of their original abundance, the eventual outcome of competition with invasive European annual grasses at a local scale (competitive exclusion, stable persistence, or priority effects) remains unresolved. Here, we used a two-species discrete time population growth model to predict the outcome of competition between exotic annual and native perennial grasses in California, and to determine the demographic traits responsible for the outcome. The model is parameterized with empirical data from several field experiments. We found that, once introduced, annual grasses persist stably with little uncertainty. Although perennial grasses are competitively excluded on average, the most likely range of model predictions also includes stable coexistence with annual grasses. As for many other perennial plants, native bunchgrass population growth is highly sensitive to the survival of adults. Management interventions that improve perennial adult survival are likely to be more effective than those that reduce exotic annual seed production or establishment, reduce competition, or increase perennial seedling establishment. Further empirical data on summer survival of bunchgrass adults and competitive effects of annuals on perennials would most improve model predictions because they contribute most to the uncertainty in the predicted outcome for the perennial grass. This work demonstrates how demographic approaches can clarify the outcome of competition between native and exotic species, identify key targets for future empirical work, and predict the effectiveness of management interventions. Such studies are critical both for understanding the impacts of invasion and for targeting management responses that maximize the benefit to native species.


Assuntos
Pradaria , Espécies Introduzidas , Modelos Biológicos , Poaceae/fisiologia , California , Simulação por Computador , Especificidade da Espécie , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA