Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(1): 101345, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38128533

RESUMO

Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients that reduces efficacy and increases adverse reactions. Our laboratory has shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer, p(Man). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We find that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by T regulatory cells. We identify increased T cell receptor signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.


Assuntos
Formação de Anticorpos , Produtos Biológicos , Humanos , Antígenos , Anticorpos , Linfócitos B , Produtos Biológicos/farmacologia
2.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37066302

RESUMO

Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients, which reduces efficacy and increases adverse reactions. Our laboratory has previously shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer (p(Man)). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We found that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by Tregs. We identify increased TCR signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.

3.
Nat Biomed Eng ; 7(9): 1142-1155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679570

RESUMO

Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Tolerância Imunológica , Animais , Camundongos , Autoimunidade , Glicosilação , Acetilgalactosamina , Encefalomielite Autoimune Experimental/terapia
4.
Sci Immunol ; 6(56)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637595

RESUMO

Although most current treatments for autoimmunity involve broad immunosuppression, recent efforts have aimed to suppress T cells in an antigen-specific manner to minimize risk of infection. One such effort is through targeting antigen to the apoptotic pathway to increase presentation of the antigen of interest in a tolerogenic context. Erythrocytes present a rational candidate to target because of their high rate of eryptosis, which facilitates continual uptake by antigen-presenting cells in the spleen. Here, we develop an approach that binds antigens to erythrocytes to induce sustained T cell dysfunction. Transcriptomic and phenotypic analyses revealed signatures of self-tolerance and exhaustion, including up-regulation of PD-1, CTLA4, Lag3, and TOX. Antigen-specific T cells were incapable of responding to an adjuvanted antigenic challenge even months after antigen clearance. With this strategy, we prevented pathology in a mouse experimental autoimmune encephalomyelitis model. CD8+ T cell education occurred in the spleen and was dependent on cross-presenting Batf3+ dendritic cells. These results demonstrate that antigens associated with eryptotic erythrocytes induce lasting T cell dysfunction that could be protective in deactivating pathogenic T cells.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Eriptose/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Apresentação Cruzada , Células Dendríticas/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Células HEK293 , Humanos , Tolerância Imunológica , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
J Neurosci Methods ; 263: 15-22, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26820904

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a debilitating event with multiple mechanisms of degeneration leading to life-long paralysis. Biomaterial strategies, including bridges that span the injury and provide a pathway to reconnect severed regions of the spinal cord, can promote partial restoration of motor function following SCI. Axon growth through the bridge is essential to characterizing regeneration, as recovery can occur via other mechanisms such as plasticity. Quantitative analysis of axons by manual counting of histological sections can be slow, which can limit the number of bridge designs evaluated. In this study, we report a semi-automated process to resolve axon numbers in histological sections, which allows for efficient analysis of large data sets. NEW METHOD: Axon numbers were estimated in SCI cross-sections from animals implanted with poly(lactide co-glycolide) (PLG) bridges with multiple channels for guiding axons. Immunofluorescence images of histological sections were filtered using a Hessian-based approach prior to threshold detection to improve the signal-to-noise ratio and filter out background staining associated with PLG polymer. RESULTS: Semi-automated counting successfully recapitulated average axon densities and myelination in a blinded PLG bridge implantation study. COMPARISON WITH EXISTING METHODS: Axon counts obtained with the semi-automated technique correlated well with manual axon counts from blinded independent observers across sections with a wide range of total axons. CONCLUSIONS: This semi-automated detection of Hessian-filtered axons provides an accurate and significantly faster alternative to manual counting of axons for quantitative analysis of regeneration following SCI.


Assuntos
Axônios/fisiologia , Materiais Biocompatíveis/uso terapêutico , Processamento Eletrônico de Dados , Ácido Láctico/uso terapêutico , Regeneração Nervosa/fisiologia , Ácido Poliglicólico/uso terapêutico , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/cirurgia , Análise de Variância , Animais , Axônios/patologia , Axônios/ultraestrutura , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Proteína Básica da Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA