Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Chem Chem Phys ; 26(6): 5489-5498, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38282480

RESUMO

Prospective composites, based on graphene (G) and hexagonal boron nitride (h-BN) nanoparticles, synthesized using a plasma jet and conducting polymer PEDOT:PSS, were used to create and study a set of sensors in the current study. The composites used were G:PEDOT:PSS (GPP) and G:h-BN:PEDOT:PSS (GBNPP). The PEDOT:PSS content in the composites was 10-3 wt%, and the ratio of G : h-BN was 1 : 1 in GBNPP. The development of these new highly conductive graphene-based composites makes it possible to create an active sensor layer with an ultra-low thickness of several nanometers. The ultra-high sensitivity of the current response, S, was ((2.0-3.3) × 106)% for GPP and GBNPP (2-3 printing layers) for a humidity range of 20-80%. The sensor response in the form of current pulses associated with human breathing has a range of ∼2-3 orders of magnitude. Two different processes are assumed to determine the form of the current pulse: the first is a fast process with a rise time of less than 1-4 seconds; the second is a relatively slow process with a front time of several tens of seconds. When touching with a finger (useful, for instance, for a flexible touchpad), a current response was observed as pulses of ∼2-3 orders of magnitude. We hypothesize that skin sweat is likely to play a critical role in the sensory response. Thus, this work presents an effective approach to creating a highly sensitive humidity sensor based on composite 2D materials. Moreover, the ultra-high sensitivity of the studied sensors is accompanied by their low cost and ease of manufacturing by 2D-printing.

2.
Phys Chem Chem Phys ; 26(9): 7844-7854, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376373

RESUMO

A unique nanomaterial has been developed for sweat analysis, including glucose level monitoring. Simple resusable low-cost sensors from composite materials based on graphene, hexagonal boron nitride, and conductive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) polymer have been developed and fabricated via 2D printing on flexible substrates. The sensors were tested as biosensors using different water-based solutions. A strong increase in the current response (several orders of magnitude) was observed for aqua vapors or glucose solution vapors. This property is associated with the sorption capacity of graphene synthesized in a volume of plasma jets and thus having many active centers on the surface. The structure and properties of graphene synthesized in a plasma are different from those of graphene created by other methods. As a result, the current response for a wearable sensor is 3-5 orders of magnitude higher for the reference blood glucose concentration range of 4-14 mM. It has been found that the most promising sensor with the highest response was fabricated based on the graphene:PEDOT:PSS composite. The graphene:h-BN:PEDOT:PSS (h-BN is hexagonal boron nitride) sensors demonstrated a longer response and the highest response after the functionalization of the sensors with a glucose oxidase enzyme. The reusable wearable graphene:PEDOT:PSS glucose sensors on a paper substrate demonstrated a current response of 10-10 to 10-5 A for an operating voltage of 0.5 V and glucose range of 4-10 mM.

3.
Phys Chem Chem Phys ; 25(46): 32132-32141, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37986588

RESUMO

In the present study, the V2O5 films synthesized by plasma-enhanced atomic layer deposition on p-Si and fluorinated graphene on Si (or FG/Si) substrates were analyzed for memristive applications. A number of samples were grown with V2O5 films with an average thickness of 1.0-10.0 nm, as determined by ellipsometric measurements. The study of surface morphology by atomic force microscopy showed that an island growth occurs in the initial stages of the film growth. The Raman spectra of the synthesized V2O5 films with an average thickness of more than 2.0 nm on the SiO2/Si substrates exhibit six distinct modes typical of the orthorhombic V2O5 phase. A large hysteresis was found in the C-V characteristics of the V2O5 films with a thickness of 1.0-4.2 nm. In general, the built-in charge in the V2O5 layers with an average thickness of 1.0-4.0 nm is positive and has a value of about ∼(2-8) × 1011 cm-2 at the 1 MHz frequency. Increasing the V2O5 film thickness leads to the accumulation of negative built-in charge up to -(1.7 to 2.3) × 1011 cm-2 at the 1 MHz frequency. The temperature dependence of the conductivity exhibits different electrically active states in V2O5/Si and V2O5/FG/Si structures. Thus, the FG layer can modify these states. V2O5 layers with an average film thickness of 1.0-3.6 nm demonstrate the memristive switching with an ON/OFF ratio of ∼1-4 orders of magnitude. At film thicknesses above 5.0 nm, the memristive switching practically vanishes. V2O5 films with an average thickness of 3.6 nm were found to be particularly stable and promising for memristive switching applications.

4.
Phys Chem Chem Phys ; 24(46): 28232-28241, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382495

RESUMO

During the pyrolysis of hydrocarbons in helium plasma jets in a plasma-chemical reactor, graphene flakes of a different structure and resistance were obtained. The presence of hydrogen in these structures was established by physicochemical methods, and its content depends on the pressure in the plasma-chemical reactor and the composition of a plasma-forming system. In addition to hydrogen, a relatively low concentration of oxygen atoms is present in the graphene flakes. Hydrogen is involved in the graphene nucleation, whereas oxygen is absorbed on graphene flakes from the air at low temperatures. It was found that a pressure increase in the reactor (up to 710 Torr) leads to the formation of flakes with a low resistivity (0.12-0.20 kOhm sq-1) and low defect density. In the case of synthesis at a low pressure (350-500 Torr), the resistance of graphene flakes is increased by three orders of magnitude (100-400 kOhm sq-1) with a more complicated defect structure and built-in hydrogen. Moreover, hydrogen is difficult to remove from these flakes, and annealing at relatively high temperatures (up to 300 °C) leads to a weak decrease in the resistance due to flake deformation. Additionally, the functionalization of the graphene flakes synthesized at a low pressure with fluorine atoms is suppressed due to their structural features. In general, the selection of growth parameters (gas pressure in a camera, flow rate and content of impurity atoms) allows one to control the defects in graphene, and its structure and conductivity.

5.
Int J Mol Sci ; 23(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35008924

RESUMO

Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium-pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium-pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.


Assuntos
Epilepsia/metabolismo , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Convulsões , Tiazóis/farmacologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Lítio , Masculino , Neurônios/efeitos dos fármacos , Pilocarpina , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
6.
Phys Chem Chem Phys ; 23(36): 20434-20443, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494063

RESUMO

Memristors currently attract much attention as basic building blocks for future neuromorphic electronics. Due to their unusual electronic, optical, magnetic, electrochemical, and structural properties, transition metal oxides offer much potential in the development of memristors. Recent trends in the design and fabrication of electronic devices have led to miniaturization of their working elements, with nanometer-sized structures enjoying increasing demand. In the present study, we investigated resistive switching on individual vanadium oxide (V2O5) crystal-hydrate nanoparticles, 2 to 10 nm in size, encapsulated in fluorinated graphene (FG). Measurements using a conductive atomic force microscope (c-AFM) probe showed that the core-shell V2O5/FG nanoparticles make it possible to achieve bipolar resistive switching, reproducible during 104 switching cycles, with the ON/OFF current ratio reaching 103-105. The switching voltage of the structures depends on the thickness of the FG shells of the composite particles and equals ∼2-4 V. It is shown that the encapsulation of V2O5 particles in fluorinated graphene ensures a high stability of the resistive switching effect and, simultaneously, prevents the escape of water from the crystalline vanadium oxide hydrates. A qualitative model is proposed to describe the bipolar resistive switching effect in examined structures. Results reported in the present article will prove useful in creating bipolar nanoswitches.

7.
Nanotechnology ; 31(29): 295602, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213679

RESUMO

A new approach to creating a new and locally nanostructured graphene-based material is reported. We studied the electric and structural properties of partially fluorinated graphene (FG) films obtained from an FG-suspension and nanostructured by high-energy Xe ions. Local shock heating in ion tracks is suggested to be the main force driving the changes. It was found that ion irradiation leads to the formation of locally thermally expanded FG and its cracking into nanoparticles with small (∼1.5-3 nm) graphene quantum dots (GQD), embedded in them. The bandgap of GQD was estimated as 1 -1.5 eV. A further developed approach was applied to correct the functional properties of printed FG-based crossbar memristors. Dielectric FG films with small quantum dots may offer prospects in graphene-based electronics due to their stability and promising properties.

8.
Nanotechnology ; 30(25): 255701, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30836347

RESUMO

Two-layer films of partially fluorinated graphene (PFG) with graphene quantum dots and polyvinyl alcohol (PVA) were prepared by means of 2D printing technology. A stable resistive switching effect with the ON/OFF current ratio amounting from one to 4-5 orders of magnitude is found. The decrease in the PVA thickness leads to a change of the unipolar threshold switchings to the bipolar resistive switchings. The crossbar Ag/PFG/PVA/Ag structures retain their performance up to 6.5% deformation. The switching phenomenon is observed for a period about a year. The traps with characteristic activation energies ∼0.05 eV are suggested to be responsible for resistive switching. The time of charge-carrier emission from the localized states was found to be ∼5 µs. A quality model to describe the resistive switching effect in two-layer films implying the conduction over quantum dots proceeding with the participation of active traps at the PFG/PVA interface is proposed. The structures with the design demonstrated threshold resistive switching have their high potential for development of selector devices integrated to sensor or memristors circuits, for information storage and data processing, for flexible and wearable electronics. The structures with lower PVA thickness and the bipolar threshold switching are perspective for non-volatile memory cells for printed and flexible electronics.

9.
Phys Chem Chem Phys ; 21(23): 12494-12504, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31144691

RESUMO

In the present study, a new graphene derivative created by the interaction of 2-5 nm thick multi-graphene suspension flakes with N-methylpyrrolidone (NMP) was examined. It was found that the conductivity of the films prepared from the suspensions obtained using the treatment of initial graphene suspensions in NMP decreased after additional annealing in the temperature range from 60 to 200 °C by six to seven orders of magnitude. The annealing temperature required for this decrease of conductivity shows a decrease with diminishing suspension flake sizes. The obtained high-resistivity films demonstrate low leakage currents (10-7-10-8 A cm-2), an ultra-low charge in the functionalized films (-(1-4) × 1010 cm-2), a relatively high dielectric constant of 7.0-9.0, and a breakdown electric-field strength of (2-3) × 105 V cm-1. The possibility to restore the conductivity to a resistance value of 43 kΩ sq-1 in the upper layer of the films prepared from the functionalized suspension and the possibility to obtain an unexpectedly high value of electron mobility µ≈ 55-65 cm2 V-1 s-1 in the recovered few top layers (in comparison with the electron mobility of 0.1-1 cm2 V-1 s-1 in the films prepared from the initial suspension) was shown. The combination of the useful properties of the films prepared from the functionalized graphene suspension together with the possibility to form heterostructures using the simple chemical recovery of the top layer and the expected flexibility of such heterostructures, makes these films promising for a wide range of applications, including the fabrication of dielectric films for van der Waals heterostructures and structures intended for flexible and printed electronics.

10.
BMC Cancer ; 18(1): 904, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236079

RESUMO

BACKGROUND: There is an urgent need for more novel and efficacious therapeutic agents and strategies for the treatment of ovarian cancer - one of the most formidable female malignancies. These approaches should be based on comprehensive understanding of the pathobiology of this cancer and focused on decreasing its recurrence and metastasis. The aim of this study was to evaluate the efficacy of five-year maintenance therapy with indole-3-carbinol (I3C) as well as I3C and epigallocatechin-3-gallate (EGCG) conducted before, during, and after combined treatment compared with combined treatment alone in advanced ovarian cancer. METHODS: Patients with stage III-IV serous ovarian cancer were assigned to receive combined treatment plus I3C (arm 1), combined treatment plus I3C and EGCG (arm 2), combined treatment plus I3C and EGCG plus long-term platinum-taxane chemotherapy (arm 3), combined treatment alone without neoadjuvant platinum-taxane chemotherapy (control arm 4), and combined treatment alone (control arm 5). Combined treatment included neoadjuvant platinum-taxane chemotherapy, surgery, and adjuvant platinum-taxane chemotherapy. The primary endpoint was overall survival (OS). Secondary endpoints were progression-free survival (PFS) and rate of patients with recurrent ovarian cancer with ascites after combined treatment. RESULTS: After five years of follow-up, maintenance therapy dramatically prolonged PFS and OS compared to control. Median OS was 60.0 months (95% CI: 58.0-60.0 months) in arm 1, 60.0 months (95% CI: 60.0-60.0 months) in arms 2 and 3 while 46.0 months (95% СI: 28.0-60.0 months) in arm 4, and 44.0 months (95% СI: 33.0-58.0 months) in arm 5. Median PFS was 39.5 months (95% СI: 28.0-49.0 months) in arm 1, 42.5 months (95% СI: 38.0-49.0 months) in arm 2, 48.5 months (95% СI: 39.0-53.0 months) in arm 3, 24.5 months (95% СI: 14.0-34.0 months) in arm 4, 22.0 months (95% СI: 15.0-26.0 months) in arm 5. The rate of patients with recurrent ovarian cancer with ascites after combined treatment was significantly less in maintenance therapy arms compared to control. CONCLUSIONS: Long-term usage of I3C and EGCG may represent a new promising way of maintenance therapy in advanced ovarian cancer patients, which achieved better treatment outcomes. TRIAL REGISTRATION: Retrospectively registered with ANZCTR number: ACTRN12616000394448 . Date of registration: 24/03/2016.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores , Terapia Combinada , Feminino , Genes BRCA1 , Humanos , Estimativa de Kaplan-Meier , Quimioterapia de Manutenção , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Modelos de Riscos Proporcionais , Qualidade de Vida , Resultado do Tratamento
11.
Nanotechnology ; 28(7): 074001, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28084224

RESUMO

The band structure and electric properties of films created from a partially fluorinated graphene suspension are analyzed in this paper. As may be inferred from the structural study, graphene islands (quantum dots) are formed in these films. Various types of negative differential resistance (NDR) and a step-like increase in the current are found for films created from the fluorinated graphene suspension. NDR resulting from the formation of the potential barrier system in the film and corresponding to the theoretical prediction is observed for a relatively low fluorination degree. The origin of the NDR varies with an increase in the fluorination degree of the suspension. The observation of NDR in the fluorinated films widens the range of application of such films, including as active device layers fabricated using 2D printed technologies on rigid and flexible substrates.

12.
Mol Cell Proteomics ; 13(12): 3558-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25271300

RESUMO

Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome. In order to omit components of the systemic response to ascites formation, we compared malignant ascites with cirrhosis ascites. Metabolome analysis revealed 41 components that differed significantly between malignant and cirrhosis ascites. Most of the identified cancer-specific metabolites are known to be important signaling molecules. Proteomic analysis identified 2096 and 1855 proteins in the ovarian cancer and cirrhosis ascites, respectively; 424 proteins were specific for the malignant ascites. Functional analysis of the proteome demonstrated that the major differences between cirrhosis and malignant ascites were observed for the cluster of spliceosomal proteins. Additionally, we demonstrate that several splicing RNAs were exclusively detected in malignant ascites, where they probably existed within protein complexes. This result was confirmed in vitro using an ovarian cancer cell line. Identification of spliceosomal proteins and RNAs in an extracellular medium is of particular interest; the finding suggests that they might play a role in the communication between cancer cells. In addition, malignant ascites contains a high number of exosomes that are known to play an important role in signal transduction. Thus our study reveals the specific features of malignant ascites that are associated with its function as a medium of intercellular communication.


Assuntos
Ascite/genética , Regulação Neoplásica da Expressão Gênica , Metaboloma/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Proteoma/genética , RNA Neoplásico/genética , Processamento Alternativo , Ascite/metabolismo , Ascite/patologia , Comunicação Celular , Linhagem Celular Tumoral , Exossomos/química , Exossomos/metabolismo , Feminino , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteoma/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Spliceossomos/química , Spliceossomos/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
13.
Materials (Basel) ; 16(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837021

RESUMO

In the present study we investigated the nanostructuring processes in locally suspended few-layer graphene (FLG) films by irradiation with high energy ions (Xe, 26-167 MeV). For such an energy range, the main channel of energy transfer to FLG is local, short-term excitation of the electronic subsystem. The irradiation doses used in this study are 1 × 1011-5 × 1012 ion/cm2. The structural transformations in the films were identified by Raman spectroscopy and transmission electron microscopy. Two types of nanostructures formed in the FLG films as a result of irradiation were revealed. At low irradiation doses the nanostructures were formed preferably at a certain distance from the ion track and had the form of 15-35 nm "bunches". We assumed that the internal mechanical stress that arises due to the excited atoms ejection from the central track part creates conditions for the nanodiamond formation near the track periphery. Depending on the energy of the irradiating ions, the local restructuring of films at the periphery of the ion tracks can lead either to the formation of nanodiamonds (ND) or to the formation of AA' (or ABC) stacking. The compressive strain value and pressure at the periphery of the ion track were estimated as ~0.15-0.22% and ~0.8-1.2 GPa, respectively. The main novel results are the first visualization of ion tracks in graphene in the form of diamond or diamond-like rings, the determination of the main condition for the diamond formation (the absence of a substrate in combination with high ion energy), and estimates of the local strain at the track periphery. Generally, we have developed a novel material and have found how to control the film properties by introducing regions similar to quantum dots with the diamond interface in FLG films.

14.
Nanotechnology ; 23(31): 315601, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22797135

RESUMO

A few-layer graphene-based hybrid material with high thermal and chemical stability and reproducible and tunable electronic properties was fabricated by intercalation of N-methylpyrrolidone into a few-layer graphene combined with heat treatment. Depending on the process temperature, the obtained material could be produced with the following properties: a broad range of resistivity values (six to seven orders of magnitude) in combination with a high carrier mobility, a tunable band-gap (from 0 up to 3-4 eV) and sp² or sp³ hybridization of carbon atoms. The extremely strong step-like temperature dependence (within 10 °C) of its properties observed in the vicinity of two temperatures, 90 and 200 °C, seems to be important for various applications. The hybrid material opens viable routes to progress in the design of three-dimensional nanostructures.

15.
Materials (Basel) ; 15(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35161199

RESUMO

In this study, the screen-printed flexible humidity sensor and supercapacitor structures from a suspension of mildly oxidized graphene (MOG) was obtained. MOG suspension with a low atomic oxygen content (~20%) was synthesized by electrochemical exfoliation of natural graphite in an aqueous solution of ammonium sulfate. MOG films (average thickness 5 µm) with a surface resistance of 102-103 kΩ/sq were obtained by screen printing on a flexible substrate. The thermal reduction of MOG films at 200 °C reduced the surface resistance to 1.5 kΩ/sq. The laser reduction with a 474 nm and 200 mW solid-state laser reduced the surface resistance to ~0.065 kΩ/sq. Various structures were screen-printed on a flexible substrate for a variety of flexible electronics applications. The structures representing a flat supercapacitor had an average specific capacitance of ~6 µF/cm2. The tensile deformations occurring during bending reduced the capacitance by 40% at a bending radius of 2 mm. Humidity sensing structures with sensitivity of 9% were obtained.

16.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329539

RESUMO

A new approach based on the irradiation by heavy high energy ions (Xe ions with 26 and 167 MeV) was used for the creation of graphene quantum dots in the fluorinated matrix and the formation of the memristors in double-layer structures consisting of fluorinated graphene (FG) on polyvinyl alcohol (PVA). As a result, memristive switchings with an ON/OFF current relation ~2-4 orders of magnitude were observed in 2D printed crossbar structures with the active layer consisting of dielectric FG films on PVA after ion irradiation. All used ion energies and fluences (3 × 1010 and 3 × 1011 cm-2) led to the appearance of memristive switchings. Pockets with 103 pulses through each sample were passed for testing, and any changes in the ON/OFF current ratio were not observed. Pulse measurements allowed us to determine the time of crossbar structures opening of about 30-40 ns for the opening voltage of 2.5 V. Thus, the graphene quantum dots created in the fluorinated matrix by the high energy ions are a perspective approach for the development of flexible memristors and signal processing.

17.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295335

RESUMO

The possibility of creating antennas of the 5G standard (5.2-5.9 GHz) with specified electrodynamic characteristics by printing layers of variable thickness using a graphene suspension has been substantiated experimentally and by computer simulation. A graphene suspension for screen printing on photographic paper and other flexible substrates was prepared by means of exfoliation from graphite. The relation between the graphene layer thickness and its sheet resistance was studied with the aim of determining the required thickness of the antenna conductive layer. To create a two-sided dipole, a technology has been developed for the double-sided deposition of graphene layers on photographic paper. The electrodynamic characteristics of graphene and copper antennas of identical design are compared. The antenna design corresponds to the operating frequency of 2.4 GHz. It was found that the use of graphene as a conductive layer made it possible to suppress the fundamental (first) harmonic (2.45 GHz) and to observe radiation at the second harmonic (5.75 GHz). This effect is assumed to observe in the case when the thickness of graphene is lower than that of the skin depth. The result indicates the possibility of changing the antenna electrodynamic characteristics by adjusting the graphene layer thickness.

18.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630925

RESUMO

The structure and electric properties of hexagonal boron nitride (h-BN):graphene composite with additives of the conductive polymer PEDOT:PSS and ethylene glycol were examined. The graphene and h-BN flakes synthesized in plasma with nanometer sizes were used for experiments. It was found that the addition of more than 10-3 mass% of PEDOT:PSS to the graphene suspension or h-BN:graphene composite in combination with ethylene glycol leads to a strong decrease (4-5 orders of magnitude, in our case) in the resistance of the films created from these suspensions. This is caused by an increase in the conductivity of PEDOT:PSS due to the interaction with ethylene glycol and synergetic effect on the composite properties of h-BN:graphene films. The addition of PEDOT:PSS to the h-BN:graphene composite leads to the correction of the bonds between nanoparticles and a weak change in the resistance under the tensile strain caused by the sample bending. A more pronounced flexibility of the composite films with tree components is demonstrated. The self-organization effects for graphene flakes and polar h-BN flakes lead to the formation of micrometer sized plates in drops and uniform-in-size nanoparticles in inks. The ratio of the components in the composite was found for the observed strong hysteresis and a negative differential resistance. Generally, PEDOT:PSS and ethylene glycol composite films are promising for their application as electrodes or active elements for logic and signal processing.

19.
Materials (Basel) ; 14(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923570

RESUMO

Two-dimensional nanomaterials such as graphene can provide various functional properties to textiles, which have great potential in sportswear, healthcare etc. In this study, the properties of nylon and cotton-based electronic textiles coated with reduced graphene oxide are investigated. After reduction of graphene oxide coating in hydrazine vapor, e-textiles with a resistance of ~350 Ω/sq for nylon, and ~1 kΩ/sq for cotton were obtained. Cyclic mechanical bending tests of samples showed that the resistance increases during bending up to 10-20%. The use of bovine serum albumin as an adhesive layer improved the wash stability for samples with nylon up to 40 washing cycles. The use of BF-6 glue as a protective layer reduced changes in resistance during bending, and improved wash stability of cotton samples. It was shown that the resistance of the obtained samples is sensitive to changes in temperature and humidity. In addition, obtained e-textiles attached to a person's wrist were able to measure heart rate. Thus, the obtained electronic textiles based on cotton and nylon coated with reduced graphene oxide demonstrates good characteristics for use as sensors for monitoring vital signs.

20.
Materials (Basel) ; 13(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106413

RESUMO

The resistivity of different films and structures containing fluorinated graphene (FG) flakes and chemical vapor deposition (CVD)-grown graphene of various fluorination degrees under tensile and compressive strains due to bending deformations was studied. Graphene and multilayer graphene films grown by means of the chemical vapor deposition (CVD) method were transferred onto the flexible substrate by laminating and were subjected to fluorination. They demonstrated a weak fluorination degree (F/C lower 20%). Compressive strains led to a strong (one-two orders of magnitude) decrease in the resistivity in both cases, which was most likely connected with the formation of additional conductive paths through fluorinated graphene. Tensile strain up to 3% caused by the bending of both types of CVD-grown FG led to a constant value of the resistivity or to an irreversible increase in the resistivity under repeated strain cycles. FG films created from the suspension of the fluorinated graphene with a fluorination degree of 20-25%, after the exclusion of design details of the used structures, demonstrated a stable resistivity at least up to 2-3% of tensile and compressive strain. The scale of resistance changes R/R0 was found to be in the range of 14-28% with a different sign at the 10% tensile strain (bending radius 1 mm). In the case of the structures with the FG thin film printed on polyvinyl alcohol, a stable bipolar resistive switching was observed up to 6.5% of the tensile strain (bending radius was 2 mm). A further increase in strain (6.5-8%) leads to a decrease in ON/OFF current ratio from 5 down to 2 orders of magnitude. The current ratio decrease is connected with an increase under the tensile strain in distances between conductive agents (graphene islands and traps at the interface with polyvinyl alcohol) and thickness of fluorinated barriers within the active layer. The excellent performance of the crossbar memristor structures under tensile strain shows that the FG films and structures created from suspension are especially promising for flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA