Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(36): e2407765121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39207733

RESUMO

Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.


Assuntos
Cálcio , Citosol , Eritrócitos , Canais Iônicos , Canais Iônicos/metabolismo , Humanos , Eritrócitos/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Hemólise
2.
Funct Integr Genomics ; 24(5): 162, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289188

RESUMO

Recent studies suggest a need for reliable biomarkers enhancing prognosis prediction and treatment strategies in cancer. Here, we performed a data analysis bearing on the expression of SCN3B, voltage-gated sodium channel (VGSC) ß3 subunit, as a possible candidate for the development of a glioma biomarker for the first time. This extends our previous review article that mentioned the potential of SCN3B as a prognostic biomarker for glioma survival, further examining its association with existing indicators and immune responses. We utilized clinical and genomic data from multiple glioma cohorts. These include the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We employed analytical techniques including time-dependent receiver operating characteristic (ROC) analysis, decision curves analysis (DCA), and correlation studies with immune checkpoint markers. Our findings indicate a differential SCN3B expression between glioma grades, and that this significantly correlates with patient survival, particularly in oligodendroglioma subtypes. The DCA curves suggested that the inclusion of SCN3B in the prognostic model would improve decision-making in these subtypes. Moreover, SCN3B expression positively correlated with the presence of key immune cells and negatively correlated with several immune checkpoint inhibitors. This suggests potential roles in modulating immune responses in glioma. Thus, SCN3B emerges as a promising potential prognostic biomarker for glioma, especially for oligodendroglioma. Its dual correlations with prognosis and immune regulation present a compelling case for further experimental and clinical investigations to establish its utility in enhancing glioma management strategies. These findings underscore the importance of integrating novel biomarkers with traditional prognostic models to refine treatment paradigms and improve patient outcomes.


Assuntos
Biomarcadores Tumorais , Glioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/imunologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Oligodendroglioma/genética , Oligodendroglioma/metabolismo
3.
Artif Organs ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101288

RESUMO

BACKGROUND: Von Willebrand factor (VWF) is a critical glycoprotein in hemostasis and is an important factor in diagnosing bleeding disorders. Albeit the analysis of VWF is often compromised by inconsistent methodologies and challenges quantifying multimeric size. Current VWF multimer analysis methods are costly, time-consuming, and often inconsistent; thus, demanding skilled professionals. This study aimed to streamline and optimize the VWF multimer analysis technique, making it more efficient and reproducible, particularly for identifying or predicting mechanical circulatory support (MCS) induced bleeding disorders. METHODS: Blood samples from healthy volunteers were exposed to high shear forces via a Medtronic HeartWare ventricular assist device. VWF multimers were analyzed using vertical-gel agarose electrophoresis and Western blotting. Differences in VWF distribution were determined using densitometry, and two methods of densitometric analysis were compared: proprietary software against open-source software. RESULTS: Using the developed method: (i) protocol duration was accelerated from three days (in classical methods) to ~ eight hours; (ii) the resolution of the high molecular weight (HMW) VWF multimers were substantially improved; and (iii) densitometric analysis tools were validated. Additionally, the densitometry analysis using two software types showed a strong correlation between results, with the proprietary software reporting slightly higher HMW VWF percentages. CONCLUSION: This methodology is recommended for affordable, accurate, and reproducible VWF multimer evaluations during MCS use and testing. Further research comparing this method with semi-automated methods would provide additional insight and improve inter-laboratory comparisons.

4.
Langenbecks Arch Surg ; 409(1): 197, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913126

RESUMO

BACKGROUND: The Swiss national union of residents and attendings (VSAO) has voiced its desire for a transition from the current 48 h work week to a 42 + 4 h work week, in which 42 h be focused on patient care with the remaining 4 h be dedicated solely to training purposes. This could potentially result in a significant decrease in surgical education time. The current study seeks to address the issues involved in its implementation as well as possible compensatory mechanisms. METHODS: This mixed methods study seeks to clearly underline the challenges associated with the implementation of a 42 + 4 h work week. First, the major stakeholders were identified and analysed via umbrella review. Thereafter, a classic stakeholder analysis was performed. Via morphological matrix, possible models for the implementation of a 42 + 4 h work week were developed and evaluated. Finally, representatives from the identified stakeholder groups were interviewed and given the opportunity to provide feedback. RESULTS: A total of 26 articles were identified by the literature search and were used to identify the major stakeholders and issues involved in the implementation of the desired work hour regulation. Overall, these showed conflicting results with regard to the effect decreased working hours would have on surgical training and patient outcomes. In the end, the morphological matrix produced three feasible and desirable models for the implementation of a 42 + 4 h work week. Each included compensatory mechanisms like auxiliary staff, reduction in administrative tasks, and a switch to EPAs. In their interviews, the stakeholders generally supported these solutions. CONCLUSION: Given the increasing emphasis on the importance of a positive work-life balance, it seems inevitable that the next few years will see the introduction of a 42 + 4 h work week in Switzerland. However, it is imperative that every effort be made to preserve the quality of training and patient care for the next generations. This will require the cooperation of all stakeholders in order to find workable solutions.


Assuntos
Cirurgia Geral , Internato e Residência , Admissão e Escalonamento de Pessoal , Carga de Trabalho , Internato e Residência/organização & administração , Suíça , Humanos , Admissão e Escalonamento de Pessoal/organização & administração , Cirurgia Geral/educação , Tolerância ao Trabalho Programado , Educação de Pós-Graduação em Medicina , Participação dos Interessados
5.
J Physiol ; 601(5): 923-940, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354758

RESUMO

In cardiac myocytes, the voltage-gated sodium channel NaV 1.5 opens in response to membrane depolarisation and initiates the action potential. The NaV 1.5 channel is typically associated with regulatory ß-subunits that modify gating and trafficking behaviour. These ß-subunits contain a single extracellular immunoglobulin (Ig) domain, a single transmembrane α-helix and an intracellular region. Here we focus on the role of the ß1 and ß3 subunits in regulating NaV 1.5. We catalogue ß1 and ß3 domain specific mutations that have been associated with inherited cardiac arrhythmia, including Brugada syndrome, long QT syndrome, atrial fibrillation and sudden death. We discuss how new structural insights into these proteins raises new questions about physiological function.


Assuntos
Arritmias Cardíacas , Síndrome do QT Longo , Humanos , Potenciais de Ação/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Sódio/metabolismo , Subunidades Proteicas
6.
J Cell Physiol ; 238(6): 1354-1367, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042220

RESUMO

The voltage-gated sodium channel NaV 1.7 is involved in various pain phenotypes and is physiologically regulated by the NaV -ß3-subunit. Venom toxins ProTx-II and OD1 modulate NaV 1.7 channel function and may be useful as therapeutic agents and/or research tools. Here, we use patch-clamp recordings to investigate how the ß3-subunit can influence and modulate the toxin-mediated effects on NaV 1.7 function, and we propose a putative binding mode of OD1 on NaV 1.7 to rationalise its activating effects. The inhibitor ProTx-II slowed the rate of NaV 1.7 activation, whilst the activator OD1 reduced the rate of fast inactivation and accelerated recovery from inactivation. The ß3-subunit partially abrogated these effects. OD1 induced a hyperpolarising shift in the V1/2 of steady-state activation, which was not observed in the presence of ß3. Consequently, OD1-treated NaV 1.7 exhibited an enhanced window current compared with OD1-treated NaV 1.7-ß3 complex. We identify candidate OD1 residues that are likely to prevent the upward movement of the DIV S4 helix and thus impede fast inactivation. The binding sites for each of the toxins and the predicted location of the ß3-subunit on the NaV 1.7 channel are distinct. Therefore, we infer that the ß3-subunit influences the interaction of toxins with NaV 1.7 via indirect allosteric mechanisms. The enhanced window current shown by OD1-treated NaV 1.7 compared with OD1-treated NaV 1.7-ß3 is discussed in the context of differing cellular expressions of NaV 1.7 and the ß3-subunit in dorsal root ganglion (DRG) neurons. We propose that ß3, as the native binding partner for NaV 1.7 in DRG neurons, should be included during screening of molecules against NaV 1.7 in relevant analgesic discovery campaigns.


Assuntos
Peçonhas , Canais de Sódio Disparados por Voltagem , Humanos , Peçonhas/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Analgésicos/uso terapêutico , Dor/tratamento farmacológico
7.
Biochem Biophys Res Commun ; 666: 61-67, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178506

RESUMO

The RGD motif on the SARS-CoV-2 spike protein has been suggested to interact with RGD-binding integrins αVß3 and α5ß1 to enhance viral cell entry and alter downstream signaling cascades. The D405N mutation on the Omicron subvariant spike proteins, resulting in an RGN motif, has recently been shown to inhibit binding to integrin αVß3. Deamidation of asparagines in protein ligand RGN motifs has been demonstrated to generate RGD and RGisoD motifs that permit binding to RGD-binding integrins. Two asparagines, N481 and N501, on the Wild-type spike receptor-binding domain have been previously shown to have deamidation half-lives of 16.5 and 123 days, respectively, which may occur during the viral life cycle. Deamidation of Omicron subvariant N405 may recover the ability to interact with RGD-binding integrins. Thus, herein, all-atom molecular dynamics simulations of the Wild-type and Omicron subvariant spike protein receptor-binding domains were conducted to investigate the potential for asparagines, the Omicron subvariant N405 in particular, to assume the optimized geometry for deamidation to occur. In summary, the Omicron subvariant N405 was primarily found to be stabilized in a state unfavourable for deamidation after hydrogen bonding with downstream E406. Nevertheless, a small number of RGD or RGisoD motifs on the Omicron subvariant spike proteins may restore the ability to interact with RGD-binding integrins. The simulations also provided structural clarification regarding the deamidation rates of Wild-type N481 and N501 and highlighted the utility of tertiary structure dynamics information in predicting asparagine deamidation. Further work is needed to characterize the effects of deamidation on spike-integrin interactions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Asparagina , Integrina alfaVbeta3
8.
Microvasc Res ; 148: 104549, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37192687

RESUMO

Obstructive sleep apnoea (OSA) is a prevalent disorder that causes repetitive, temporary collapses of the upper airways during sleep, resulting in intermittent hypoxaemia and sleep fragmentation. Given those with OSA also exhibit decreased blood fluidity, this clinical population is at heightened risk for cardiovascular disease (CVD) development. Continuous positive airway pressure (CPAP) remains a primary therapy in OSA, which improves sleep quality and limits sleep fragmentation. While CPAP effectively ameliorates nocturnal hypoxic events and associated arousals, it remains unclear whether CVD risk factors are positively impacted. The aim of the present study was thus to assess the effects of an acute CPAP therapy on sleep quality and the physical properties of blood that determine blood fluidity. Sixteen participants with suspected OSA were recruited into the current study. Participants attended the sleep laboratory for two visits: an initial diagnostic visit that included confirmation of OSA severity and comprehensive assessments of blood parameters, followed by a subsequent visit where participants were administered an individualised, acute CPAP therapy session and had their blood assessments repeated. Holistic appraisal of blood rheological properties included assessment of blood and plasma viscosity, red blood cell (RBC) aggregation, deformability, and osmotic gradient ektacytometry. Acute CPAP treatment significantly improved sleep quality parameters, which were associated with decreased nocturnal arousals and improved blood oxygen saturation. Whole blood viscosity was significantly decreased following acute CPAP treatment, which might be explained by the improved RBC aggregation during this visit. Although an acute increase in plasma viscosity was observed, it appears that the alterations in RBC properties that mediate cell-cell aggregation, and thus blood viscosity, overcame the increased plasma viscosity. While deformability of RBC was unaltered, CPAP therapy had mild effects on the osmotic tolerance of RBC. Collectively, novel observations demonstrate that a single CPAP treatment session acutely improved sleep quality, which was accompanied by improved rheological properties.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Apneia Obstrutiva do Sono , Apneia Obstrutiva do Sono/patologia , Apneia Obstrutiva do Sono/terapia , Humanos , Qualidade do Sono , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hemorreologia
9.
Trop Med Int Health ; 28(6): 501-506, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199458

RESUMO

OBJECTIVES: There is currently no booster diphtheria or tetanus vaccine for Lao children before adolescence, despite international recommendations. We investigated seroprotection against diphtheria and tetanus among Lao adolescents. METHODS: Seven hundred seventy-nine serum samples were tested for anti-diphtheria and anti-tetanus antibodies. RESULTS: Overall, 25.8% of the adolescents had antibody titers corresponding to protection against diphtheria and 30.9% to sufficient immunity against tetanus. Female participants >16 years were more likely to be protected against diphtheria (p < 0.001) and tetanus (p < 0.029). CONCLUSION: Low protection against diphtheria and tetanus, possibly due to low vaccination coverage or antibody waning, suggests booster doses are warranted before adolescence.


Assuntos
Difteria , Tétano , Criança , Humanos , Feminino , Adolescente , Laos/epidemiologia , Anticorpos Antibacterianos , Imunização Secundária , Toxoide Tetânico , Tétano/prevenção & controle , Difteria/prevenção & controle
10.
Acta Derm Venereol ; 103: adv6485, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345973

RESUMO

Perceived stigmatization places a large psychosocial burden on patients with some skin conditions. Little is known about the experience of stigmatization across a wide range of skin diseases. This observational cross-sectional study aimed to quantify perceived stigmatization and identify its predictors among patients with a broad spectrum of skin diseases across 17 European countries. Self-report questionnaires assessing perceived stigmatization and its potential predictors were completed by 5,487 dermatology outpatients and 2,808 skin-healthy controls. Dermatological diagnosis, severity, and comorbidity were clinician-assessed. Patients experienced higher levels of perceived stigmatization than controls (p < 0.001, d = 0.26); patients with psoriasis, atopic dermatitis, alopecia, and bullous disorders were particularly affected. Multivariate regression analyses showed that perceived stigmatization was related to sociodemographic (lower age, male sex, being single), general health-related (higher body mass index, lower overall health), disease-related (higher clinician-assessed disease severity, presence of itch, longer disease duration), and psychological (greater distress, presence of suicidal ideation, greater body dysmorphic concerns, lower appearance satisfaction) variables. To conclude, perceived stigmatization is common in patients with skin diseases. Factors have been identified that will help clinicians and policymakers to target vulnerable patient groups, offer adequate patient management, and to ultimately develop evidence-based interventions.


Assuntos
Psoríase , Dermatopatias , Humanos , Masculino , Estereotipagem , Pacientes Ambulatoriais , Qualidade de Vida/psicologia , Dermatopatias/diagnóstico , Dermatopatias/psicologia , Psoríase/diagnóstico , Psoríase/psicologia , Inquéritos e Questionários
11.
Biochem J ; 479(3): 225-243, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015072

RESUMO

The ability of the cellular immune system to discriminate self from foreign antigens depends on the appropriate calibration of the T cell receptor (TCR) signalling threshold. The lymphocyte homeostatic cytokine interleukin 7 (IL-7) is known to affect TCR thresholding, but the molecular mechanism is not fully elucidated. A better understanding of this process is highly relevant in the context of autoimmune disease therapy and cancer immunotherapy. We sought to characterise the early signalling events attributable to IL-7 priming; in particular, the altered phosphorylation of signal transduction proteins and their molecular localisation to the TCR. By integrating high-resolution proximity- phospho-proteomic and imaging approaches using primary T cells, rather than engineered cell lines or an in vitro expanded T cell population, we uncovered transduction events previously not linked to IL-7. We show that IL-7 leads to dephosphorylation of cytohesin interacting protein (CYTIP) at a hitherto undescribed phosphorylation site (pThr280) and alters the co-localisation of cytohesin-1 with the TCR and LFA-1 integrin. These results show that IL-7, acting via CYTIP and cytohesin-1, may impact TCR activation thresholds by enhancing the co-clustering of TCR and LFA-1 integrin.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interleucina-7/farmacologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/metabolismo , Doadores de Sangue , Células Cultivadas , Humanos , Ativação Linfocitária/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Treonina/metabolismo
12.
BMC Biol ; 20(1): 228, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209095

RESUMO

BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.


Assuntos
Sulfeto de Hidrogênio , Ácidos Nucleicos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Carbono/metabolismo , Ditiotreitol/metabolismo , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ligases/metabolismo , Lipídeos , Mercaptoetanol/metabolismo , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Vitaminas/metabolismo
13.
Cogn Emot ; 37(4): 617-632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883220

RESUMO

Salient landmarks enhance route learning. We hypothesised that semantically salient nostalgic landmarks would improve route learning compared to non-nostalgic landmarks. In two experiments, participants learned a route through a computer-generated maze using directional arrows and wall-mounted pictures. On the test trial, the arrows were removed, and participants completed the maze using only the pictures. In the nostalgia condition, pictures were of popular music artists and TV characters from 5 to 10 years ago. In the control condition, they were recent pictures of these same artists and characters. In Experiment 1, in the test trial, participants in the nostalgia condition completed the maze faster than controls. Experiment 2 conceptually replicated these findings and extended them by exploring boundary conditions. Participants had to learn two mazes sequentially. In Maze 1, we placed nostalgic/control landmarks only at non-decision points (whereas we placed them at decision points in Experiment 1). In Maze 2, we placed nostalgic/control landmarks at decision points during acquisition but removed them in the test trial (whereas they were present in the test trial in Experiment 1). In both mazes, participants in the nostalgia (compared to control) condition completed the test trial faster.


Assuntos
Aprendizagem , Música , Humanos
14.
Behav Res Methods ; 55(7): 3621-3628, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224307

RESUMO

Spatial anxiety (i.e., feelings of apprehension and fear about navigating everyday environments) can adversely impact people's ability to reach desired locations and explore unfamiliar places. Prior research has either assessed spatial anxiety as an individual-difference variable or measured it as an outcome, but there are currently no experimental inductions to investigate its causal effects. To address this lacuna, we developed a novel protocol for inducing spatial anxiety within a virtual environment. Participants first learnt a route using directional arrows. Next, we removed the directional arrows and randomly assigned participants to navigate either the same route (n = 22; control condition) or a variation of this route in which we surreptitiously introduced unfamiliar paths and landmarks (n = 22; spatial-anxiety condition). The manipulation successfully induced transient (i.e., state-level) spatial anxiety and task stress but did not significantly reduce task enjoyment. Our findings lay the foundation for an experimental paradigm that will facilitate future work on the causal effects of spatial anxiety in navigational contexts. The experimental task is freely available via the Open Science Framework ( https://osf.io/uq4v7/ ).


Assuntos
Navegação Espacial , Humanos , Aprendizagem , Ansiedade , Individualidade
15.
J Am Chem Soc ; 144(26): 11564-11568, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728272

RESUMO

Aromatic C-H activation in alkylarenes is a key step for the synthesis of functionalized organic molecules from simple hydrocarbon precursors. Known examples of such C-H activations often yield mixtures of products resulting from activation of the least hindered C-H bonds. Here we report highly selective ortho-C-H activation in alkylarenes by simple iridium complexes. We demonstrate that the capacity of the alkyl substituent to override the typical preference of metal-mediated C-H activation for the least hindered aromatic C-H bonds results from transient insertion of iridium into the benzylic C-H bond. This enables fast iridium insertion into the ortho-C-H bond, followed by regeneration of the benzylic C-H bond by reductive elimination. Bulkier alkyl substituents increase the ortho selectivity. The described chemistry represents a conceptually new alternative to existing approaches for aromatic C-H bond activation.


Assuntos
Irídio , Irídio/química
16.
Emerg Infect Dis ; 28(1): 256-259, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932463

RESUMO

During 2017-2019, a total of 88/753 (11.7%) of patients 5-90 years of age in hospitals in Saravan Province, Laos, were seropositive for hepatitis C virus antibodies. Viral RNA was found in 44 samples. Sequencing showed high diversity within genotype 6. We recommend exposure-risk investigations and targeted testing and treatment.


Assuntos
Hepacivirus , Hepatite C , Hepacivirus/genética , Hepatite C/epidemiologia , Humanos , Laos/epidemiologia , Prevalência , RNA Viral/genética
17.
J Med Virol ; 94(9): 4181-4192, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35575289

RESUMO

Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicosilação , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
18.
Microvasc Res ; 139: 104261, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624306

RESUMO

Red blood cell (RBC) populations are inherently heterogeneous, given mature RBC lack the transcriptional machinery to re-synthesize proteins affected during in vivo aging. Clearance of older, less functional cells thus aids in maintaining consistent hemorheological properties. Scenarios occur, however, where portions of mechanically impaired RBC are re-introduced into blood (e.g., damaged from circulatory support, blood transfusion) and may alter whole blood fluid behavior. Given such perturbations are associated with poor clinical outcomes, determining the tolerable level of abnormal RBC in blood is valuable. Thus, the current study aimed to define the critical threshold of blood fluid properties to re-infused physically-impaired RBC. Cell mechanics of RBC were impaired through membrane cross-linking (glutaraldehyde) or intracellular oxidation (phenazine methosulfate). Mechanically impaired RBC were progressively re-introduced into the native cell population. Negative alterations of cellular deformability and high shear blood viscosity were observed following additions of only 1-5% rigidified RBC. Low-shear blood viscosity was conversely decreased following addition of glutaraldehyde-treated cells; high-resolution microscopy of these mixed cell populations revealed decreased capacity to form reversible aggregates and decreased aggregate size. Mixed RBC populations, when exposed to supraphysiological shear, presented with compounded mechanical impairment. Collectively, key determinants of blood flow behavior are sensitive to mechanical perturbations in RBC, even when only 1-5% of the cell population is affected. Given this fraction is well-below the volume of rigidified RBC introduced during circulatory support or transfusion practice, it is plausible that some adverse events following surgery and/or transfusion may be related to impaired blood fluidity.


Assuntos
Viscosidade Sanguínea , Deformação Eritrocítica , Eritrócitos Anormais/patologia , Velocidade do Fluxo Sanguíneo , Reagentes de Ligações Cruzadas/toxicidade , Deformação Eritrocítica/efeitos dos fármacos , Transfusão de Eritrócitos , Eritrócitos Anormais/efeitos dos fármacos , Eritrócitos Anormais/metabolismo , Glutaral/toxicidade , Humanos , Masculino , Metilfenazônio Metossulfato/toxicidade , Modelos Biológicos , Estresse Oxidativo , Estresse Mecânico , Superóxidos/sangue
19.
Natl Med J India ; 35(2): 78-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36461852

RESUMO

Background Anti-tuberculosis drugs are thought to account for about 50% of drugs that cause liver injury in India. We show that the spectrum of drugs is much wider than previously reported. Methods We evaluated all patients with unexplained acute liver injury presenting during 2006-2016 using a structured proforma for drug-induced liver injury (DILI). The Roussel Uclaf Causality Assessment Method was used to assess causality. Results DILI was found in 143 of 2534 patients with acute liver injury. Nineteen patients had probable ayurvedic DILI. The other common causes of DILI were statins (16 patients) and anti-tuberculosis drugs (11 patients). Eight patients had DILI post-liver transplant. Fluconazole was the most common cause of post-liver transplant DILI. Chronic DILI (abnormal liver function test after 12 months of stopping the suspected drug) was found in 2 patients. Conclusion In otherwise unexplained acute liver injury, DILI due to ayurvedic drugs should be sought. DILI should be considered in post-liver transplant patients. Patients with DILI should be monitored for at least 12 months to exclude progression to chronic DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Humanos , Centros de Atenção Terciária , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Antituberculosos , Ayurveda , Índia/epidemiologia
20.
Biochem Soc Trans ; 49(5): 1941-1961, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643236

RESUMO

Voltage-dependent Na+ channel activation underlies action potential generation fundamental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity, surveying their structural, genetic and cellular and functional implications, translating these to their possible clinical importance. In addition to phosphorylation sites, both Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the Ca2+-sensor calmodulin in their inactivating III-IV linker and C-terminal domains (CTD), where mutations are associated with a range of skeletal and cardiac muscle diseases. We summarize in vitro cell-attached patch clamp studies reporting correspondingly diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax) and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regulated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal and cardiac myocytes. They correspondingly reduced action potential upstroke rates and conduction velocities, causing pro-arrhythmic effects in intact perfused hearts. Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic polymorphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-arrhythmic phenotypes following catecholaminergic challenge. These accompanied reductions in action potential conduction velocities. The latter were reversed by flecainide at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally explore the relevance of these mechanisms in further genetic paradigms for commoner metabolic and structural cardiac disease.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Sítios de Ligação , Modelos Animais de Doenças , Flecainida/uso terapêutico , Humanos , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Resultado do Tratamento , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA