Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744156

RESUMO

Spark Plasma Sintering (SPS) has become a conventional and promising sintering method for powder consolidation. This study aims to well understand the mechanisms of densification encountered during SPS treatments, especially in the early stages of sintering. The direct current (DC) electrical behavior of copper granular medium is characterized. Their properties are correlated with their microstructural evolutions through post-mortem scanning electron microscope (SEM) observations to allow a thorough understanding of the involved Branly effect that is suspected to occur in SPS. The electrical response is studied by modifying the initial thickness of the oxide layer on particles surfaces and applying various mechanical loads on the granular medium. Without load and at low current, the measured quasi-reversible behavior is connected to the formation of spots at the microcontacts between the particles. By increasing the current, the Branly transition from an insulating to a conductive state suddenly occurs. The insulating oxide layer is destroyed, and micro-bridges are created. The application of a mechanical pressure strongly modifies the DC Branly effect. Increasing low stress leads to a strong decrease in the breakdown field. For high-applied pressure, successive drops in the electric field are detected during the electrical transition. These successive drops are induced by microcracking of the insulating oxide layer.

2.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143721

RESUMO

A complete methodology combining experiments and modeling has been developed to investigate the constrained sintering of low-temperature cofired ceramic (LTCC) systems. The thermomechanical and sintering behavior laws, previously identified for the selected commercial LTCC material, were implemented in a finite element model. The reliability and validity range of the built model has been investigated thanks to the development of a specific distortion experience. The distortion generated during the constrained sintering of a porous LTCC layer deposited on a dense one has been monitored in situ by ombroscopy. The measured camber evolution was compared with numerical results. The camber phenomena predicted numerically and observed experimentally are very similar, characterized by the onset of distortion around 918 K and a similar evolution during heating. However, at high temperatures (around 1100 K), the simulated camber slightly differs from the experimental one. It seems to be related to the damage to the dense LTCC layer by microcracking.

3.
Materials (Basel) ; 12(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934787

RESUMO

Zirconia-based cast refractories are widely used for glass furnace applications. Since they have to withstand harsh chemical as well as thermo-mechanical environments, internal stresses and microcracking are often present in such materials under operating conditions (sometimes in excess of 1700 °C). We studied the evolution of thermal (CTE) and mechanical (Young's modulus) properties as a function of temperature in a fused-cast refractory containing 94 wt.% of monoclinic ZrO2 and 6 wt.% of a silicate glassy phase. With the aid of X-ray refraction techniques (yielding the internal specific surface in materials), we also monitored the evolution of microcracking as a function of thermal cycles (crossing the martensitic phase transformation around 1000 °C) under externally applied stress. We found that external compressive stress leads to a strong decrease of the internal surface per unit volume, but a tensile load has a similar (though not so strong) effect. In agreement with existing literature on ß-eucryptite microcracked ceramics, we could explain these phenomena by microcrack closure in the load direction in the compression case, and by microcrack propagation (rather than microcrack nucleation) under tensile conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA