Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Diabetes Obes Metab ; 19(5): 682-694, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28058779

RESUMO

AIMS: Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to ß-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce ß-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1ß (IL-1ß) in amyloid-induced Fas upregulation; and (2) the effects of IL-1ß-induced ß-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. RESEARCH DESIGN AND METHODS: Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1ß. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. ß-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1ß, ß-cell area, ß-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. RESULTS: hIAPP aggregates were found to increase IL-1ß levels in cultured human islets that correlated with ß-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced ß-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1ß treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. CONCLUSIONS: IL-1ß plays a dual role by: (1) mediating amyloid-induced Fas upregulation and ß-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1ß may provide a new strategy to preserve ß cells in conditions associated with islet amyloid formation.


Assuntos
Amiloide/agonistas , Apoptose , Interleucina-1beta/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptor fas/agonistas , Adulto , Amiloide/antagonistas & inibidores , Amiloide/química , Amiloide/metabolismo , Animais , Cadáver , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/cirurgia , Hemizigoto , Humanos , Insulina/metabolismo , Secreção de Insulina , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Tecidos , Receptor fas/metabolismo
2.
J Cell Physiol ; 231(9): 1964-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26743772

RESUMO

Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1ß and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1ß levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diabetes Mellitus Experimental/imunologia , Fibroblastos/enzimologia , Hiperglicemia/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células Secretoras de Insulina/imunologia , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Hiperglicemia/imunologia , Células Secretoras de Insulina/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Linfócitos T Reguladores/imunologia
3.
Diabetologia ; 57(4): 765-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24442508

RESUMO

AIMS/HYPOTHESIS: Reduced beta cell mass due to increased beta cell apoptosis is a key defect in type 2 diabetes. Islet amyloid, formed by the aggregation of human islet amyloid polypeptide (hIAPP), contributes to beta cell death in type 2 diabetes and in islet grafts in patients with type 1 diabetes. In this study, we used human islets and hIAPP-expressing mouse islets with beta cell Casp8 deletion to (1) investigate the role of caspase-8 in amyloid-induced beta cell apoptosis and (2) test whether caspase-8 inhibition protects beta cells from amyloid toxicity. METHODS: Human islet cells were cultured with hIAPP alone, or with caspase-8, Fas or amyloid inhibitors. Human islets and wild-type or hIAPP-expressing mouse islets with or without caspase-8 expression (generated using a Cre/loxP system) were cultured to form amyloid. Caspase-8 and -3 activation, Fas and FLICE inhibitory protein (FLIP) expression, islet beta cell and amyloid area, IL-1ß levels, and the beta:alpha cell ratio were assessed. RESULTS: hIAPP treatment induced activation of caspase-8 and -3 in islet beta cells (via Fas upregulation), resulting in apoptosis, which was markedly reduced by blocking caspase-8, Fas or amyloid. Amyloid formation in cultured human and hIAPP-expressing mouse islets induced caspase-8 activation, which was associated with Fas upregulation and elevated islet IL-1ß levels. hIAPP-expressing mouse islets with Casp8 deletion had comparable amyloid, IL-1ß and Fas levels with those expressing hIAPP and Casp8, but markedly lower beta cell apoptosis, higher beta:alpha cell ratio, greater beta cell area, and enhanced beta cell function. CONCLUSIONS/INTERPRETATION: Beta cell Fas upregulation by endogenously produced and exogenously applied hIAPP aggregates promotes caspase-8 activation, resulting in beta cell apoptosis. The prevention of amyloid-induced caspase-8 activation enhances beta cell survival and function in islets.


Assuntos
Amiloide/toxicidade , Caspase 8/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Ilhotas Pancreáticas/citologia , Adulto , Animais , Caspase 3/metabolismo , Caspase 8/genética , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Pessoa de Meia-Idade
4.
Biochem J ; 451(2): 227-34, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390957

RESUMO

The incretins, GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1) are gastrointestinal hormones conferring a number of beneficial effects on ß-cell secretion, survival and proliferation. In a previous study, it was demonstrated that delayed rectifier channel protein Kv2.1 contributes to ß-cell apoptosis and that the prosurvival effects of incretins involve Kv2.1 PTMs (post-translational modifications), including phosphorylation and acetylation. Since Kv1.5 overexpression was also shown to stimulate ß-cell death, the present study was initiated in order to determine whether incretins modulate Kv1.5α-Kvß2 interaction via PTM and the mechanisms involved. GIP and GLP-1 reduced apoptosis in INS-1 ß-cells (clone 832/13) overexpressing Kv1.5, and RNAi (RNA interference)-mediated knockdown of endogenous Kv1.5 attenuated apoptotic ß-cell death. Both GIP and GLP-1 increased phosphorylation and acetylation of Kv1.5 and its Kvß2 protein subunit, leading to their enhanced interaction. Further studies demonstrated that CBP [CREB (cAMP-response-element-binding protein)-binding protein]/SirT1 mediated acetylation/deacetylation and interaction between Kvß2 and Kv1.5 in response to GIP or GLP-1. Incretin regulation of ß-cell function therefore involves the acetylation of multiple Kvα and Kvß subunits.


Assuntos
Proteína de Ligação a CREB/metabolismo , Incretinas/farmacologia , Células Secretoras de Insulina/metabolismo , Canal de Potássio Kv1.5/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteína de Ligação a CREB/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Técnicas de Silenciamento de Genes , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Incretinas/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Canal de Potássio Kv1.5/genética , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Superfamília Shaker de Canais de Potássio
5.
Am J Pathol ; 181(4): 1296-305, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22902430

RESUMO

Islet transplantation provides a promising approach for treatment of type 1 diabetes mellitus. Amyloid formation and loss of extracellular matrix are two nonimmune factors contributing to death of isolated human islets. We tested the effects of two types of three-dimensional scaffolds, collagen matrix (CM) and fibroblast-populated collagen matrix (FPCM), on amyloid formation, viability, and function of isolated islets. Islets from cadaveric donors were cultured in FPCM, CM, or two-dimensional plate (2D) for 7 days. After 7 days, compared with the 2D culture condition, CM and FPCM markedly reduced amyloid formation of cultured islets and decreased apoptotic ß-cell rate by ∼75%. IL-1ß and Fas levels were also reduced in scaffold-embedded islets. Furthermore, ß/α cell ratios were increased by ∼18% and ∼36% in CM- and FPCM-embedded islets, respectively. Insulin content and insulin response to elevated glucose were also enhanced by both three-dimensional scaffolds. Moreover, culture in CM and FPCM (but not 2D) preserved insulin, GLUT-2, and PDX-1 mRNA expression. FPCM-embedded islets had significantly higher insulin response and lower amyloid formation than CM-embedded islets. These findings suggest that three-dimensional scaffolds reduce amyloid formation and improve viability and function of human islets in vitro, and that CM and fibroblasts have additive effects in enhancing islet function and reducing amyloid formation. Using this strategy is likely to improve outcome in human islet transplantation.


Assuntos
Amiloide/metabolismo , Ilhotas Pancreáticas/metabolismo , Técnicas de Cultura de Tecidos/métodos , Alicerces Teciduais/química , Sobrevivência de Tecidos , Apoptose , Caspase 3/metabolismo , Contagem de Células , Ativação Enzimática , Regulação da Expressão Gênica , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Interleucina-1beta/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Receptor fas/metabolismo
6.
Cell Tissue Bank ; 13(4): 569-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21818570

RESUMO

It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease. In recent years, significant progress has occurred in beta-cell replacement therapies with a progressive improvement of short-term and long term outcomes. In year 2005, considering the impact of the disease in Iran and the promising results of the Edmonton protocol, the funding for establishing a current Good Manufacturing Practice (cGMP) islet processing facility by Endocrinology and Metabolism Research Center was approved by Tehran University of Medical Sciences. Several islet isolations were performed following establishment of cGMP facility and recruitment of all required equipments for process validation and experimental purpose. Finally the first successful clinical islet isolation and transplantation was performed in September 2010. In spite of a high cost of the procedure it is considered beneficial and may prevent long term complications and the costs associated with secondary cares. In this article we will briefly describe our experience in setting up a cGMP islet processing facility which can provide valuable information for regional countries interested to establish similar facilities.


Assuntos
Fiscalização e Controle de Instalações , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Bancos de Tecidos/normas , Humanos , Irã (Geográfico) , Ilhotas Pancreáticas/citologia
7.
J Cell Physiol ; 226(7): 1813-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21506112

RESUMO

Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss. In this study, we developed a fibroblast populated collagen matrix (FPCM) as a novel scaffold to improve islet cell viability and function post-transplantation. FPCM was developed by embedding fibroblasts within type-I collagen and used as scaffold for islet grafts. Viability and insulin secretory function of islets embedded within FPCM was evaluated in vitro and in a syngeneic murine islet transplantation model. Islets embedded within acellular matrix or naked islets were used as control. Islet cell survival and function was markedly improved particularly after embedding within FPCM. The composite scaffold significantly promoted islet isograft survival and reduced the critical islet mass required for diabetes reversal by half (from 200 to 100 islets per recipient). Fibroblast embedded within FPCM produced fibronectin and growth factors and induced islet cell proliferation. No evidence of fibroblast over-growth within composite grafts was noticed. These results confirm that FPCM significantly promotes islet viability and functionality, enhances engraftment of islet grafts and decreases the critical islet mass needed to reverse hyperglycemia. This promising finding offers a new approach to reducing the number of islet donors per recipient and improving islet transplant outcome.


Assuntos
Colágeno Tipo I/metabolismo , Diabetes Mellitus Experimental/cirurgia , Fibroblastos/transplante , Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/cirurgia , Alicerces Teciduais , Animais , Apoptose , Glicemia/metabolismo , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Técnicas de Cultura de Tecidos
8.
Gastroenterology ; 138(5): 1966-75, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20138041

RESUMO

BACKGROUND & AIMS: Glucose-dependent insulinotropic polypeptide (GIP) and the proglucagon product glucagon-like peptide-1 (GLP-1) are gastrointestinal hormones that are released in response to nutrient intake and promote insulin secretion. Interestingly, a subset of enteroendocrine cells express both GIP and GLP-1. We sought to determine whether GIP also might be co-expressed with proglucagon in pancreatic alpha-cells. METHODS: We assessed GIP expression via reverse-transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. We developed a novel bioassay to measure GIP release from isolated islets, compared the biological activities of full-length and truncated GIP, and assessed the impact of immunoneutralization of islet GIP on glucose-stimulated insulin secretion in isolated islets. RESULTS: GIP messenger RNA was present in mouse islets; GIP protein localized to islet alpha-cells of mouse, human, and snake pancreas, based on immunohistochemical analyses. However, using a C-terminal GIP antibody, immunoreactivity was detected in islets from prohormone convertase (PC) 2 knockout but not wild-type mice. Bioactive GIP was secreted from mouse and human islets after arginine stimulation. In the perfused mouse pancreas, GIP(1-42) and amidated GIP(1-30) had equipotent insulinotropic actions. Finally, immunoneutralization of GIP secreted by isolated islets decreased glucose-stimulated insulin secretion. CONCLUSIONS: GIP is expressed in and secreted from pancreatic islets; in alpha-cells, PC2 processes proGIP to yield a truncated but bioactive form of GIP that differs from the PC1/3-derived form from K-cells. Islet-derived GIP promotes islet glucose competence and also could support islet development and/or survival.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Boidae , Linhagem Celular , Duodeno/metabolismo , Feminino , Polipeptídeo Inibidor Gástrico/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/metabolismo , Proglucagon/metabolismo , Pró-Proteína Convertase 2/deficiência , Pró-Proteína Convertase 2/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Transfecção
9.
J Biol Chem ; 284(44): 30372-82, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19748889

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, insulin biosynthesis, and beta-cell proliferation and survival. In previous studies GIP was shown to promote beta-cell survival by modulating the activity of multiple signaling modules and regulating gene transcription of pro- and anti-apoptotic bcl-2 family proteins. We have now evaluated the mechanisms by which GIP regulates the dynamic interactions between cytoplasmic bcl-2 family members and the mitochondria in INS-1 cells during apoptosis induced by treatment with staurosporine (STS), an activator of the mitochondria-mediated apoptotic pathway. STS induced translocation of bad and bimEL, activation of mitochondrial bax, release of mitochondrial cytochrome c, cleavage of caspase-3, and apoptosis. Each response was significantly diminished by GIP. Using selective enzyme inhibitors, overexpression of dominant-negative Akt, and Akt siRNA, it was demonstrated that GIP promoted beta-cell survival via Akt-dependent suppression of p38 MAPK and JNK and that combined inhibition was sufficient to explain the entire pro-survival responses to GIP during STS treatment. This signaling pathway also explained the pro-survival effects of GIP on INS-1 cells exposed to two other promoters of stress: thapsigargin (endoplasmic reticulum stress) and etoposide (genotoxic stress). Importantly, we discovered that GIP suppressed p38 MAPK and JNK via Akt-mediated changes in the phosphorylation state of the apoptosis signal-regulating kinase 1 in INS-1 cells and human islets, resulting in inhibition of its activity. Inhibition of apoptosis by GIP is therefore mediated via a key pathway involving Akt-dependent inhibition of apoptosis signal-regulating kinase 1, which subsequently prevents the pro-apoptotic actions of p38 MAPK and JNK.


Assuntos
Polipeptídeo Inibidor Gástrico/fisiologia , Células Secretoras de Insulina/citologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Apoptose , Sobrevivência Celular , Células Cultivadas , Humanos , Ilhotas Pancreáticas/citologia , Transdução de Sinais/fisiologia
10.
Biochim Biophys Acta ; 1790(6): 566-74, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19264107

RESUMO

BACKGROUND: Amyloid fibrils created by misfolding and aggregation of proteins are a major pathological feature in a variety of degenerative diseases. Therapeutic approaches including amyloid vaccines and anti-aggregation compounds in models of amyloidosis point to an important role for amyloid in disease pathogenesis. Amyloid deposits derived from the beta-cell peptide islet amyloid polypeptide (IAPP or amylin) are a characteristic of type 2 diabetes and may contribute to loss of beta-cells in this disease. METHODS: We developed a cellular model of rapid amyloid deposition using cultured human islets and observed a correlation between fibril accumulation and beta-cell death. A series of overlapping peptides derived from IAPP was generated. RESULTS: A potent inhibitor (ANFLVH) of human IAPP aggregation was identified. This inhibitory peptide prevented IAPP fibril formation in vitro and in human islet cultures leading to a striking increase in islet cell viability. CONCLUSIONS: These findings indicate an important contribution of IAPP aggregation to beta-cell death in situ and point to therapeutic applications for inhibitors of IAPP aggregation in enhancing beta-cell survival. GENERAL SIGNIFICANCE: Anti-amyloid compounds could potentially reduce the loss of beta-cell mass in type 2 diabetes and maintain healthy human islet cultures for beta-cell replacement therapies.


Assuntos
Amiloide/antagonistas & inibidores , Sobrevivência Celular/fisiologia , Ilhotas Pancreáticas , Sequência de Aminoácidos , Amiloide/metabolismo , Animais , Apoptose/fisiologia , Células Cultivadas , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/ultraestrutura , Dados de Sequência Molecular
11.
PLoS One ; 13(2): e0193184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474443

RESUMO

Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced ß-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of ß-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1. Investigate the effects of amyloid formation on PKB phosphorylation in primary islet ß-cells; 2. Test if inhibition of amyloid formation and/or interleukin-1ß (IL-1ß) signaling in islets can restore the changes in ß-cell phospho-PKB levels mediated by amyloid formation. Human and hIAPP-expressing mouse islets were cultured in elevated glucose with an amyloid inhibitor (Congo red) or embedded within collagen matrix to prevent amyloid formation. To block the IL-1ß signaling, human islets were treated with an IL-1 receptor antagonist (anakinra) or a glucagon-like peptide-1 agonist (exenatide). ß-cell phospho-PKB levels, proliferation, apoptosis, islet IL-1ß levels and amyloid formation were assessed. Amyloid formation in both cultured human and hIAPP-expressing mouse islets reduced ß-cell phospho-PKB levels and increased islet IL-1ß levels, both of which were restored by prevention of amyloid formation either by the amyloid inhibitor or embedding islets in collagen matrix, resulting in improved ß-cell survival. Furthermore, inhibition of IL-1ß signaling by treatment with anakinra or exenatide increased ß-cell phospho-PKB levels, enhanced proliferation and reduced apoptosis in amyloid forming human islets during 7-day culture. These data suggest that amyloid formation leads to reduced PKB phosphorylation in ß-cells which is associated with elevated islet IL-1ß levels. Inhibitors of amyloid or amyloid-induced IL-1ß production may provide a new approach to restore phospho-PKB levels thereby enhance ß-cell survival and proliferation in conditions associated with islet amyloid formation such as T2D and clinical islet transplantation.


Assuntos
Amiloide/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Feminino , Humanos , Células Secretoras de Insulina/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt
12.
Transplantation ; 83(1): 24-8, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17220786

RESUMO

BACKGROUND: Islet transplantation can reduce or eliminate the need for insulin in patients with type 1 diabetes. Exenatide is a long acting analogue of Glucagon-like peptide-1 (GLP-1) that augments glucose induced insulin secretion, and may increase beta cell mass. We evaluated the effect of exenatide on insulin secretion after islet transplantation. METHODS: Eleven C-peptide positive islet cell recipients with elevated glucose levels were treated with exenatide for three months. Response was assessed by insulin requirements, meal tolerance tests, and hyperglycemic glucose clamps. RESULTS: Ten patients responded to exenatide. Two patients who had not restarted insulin achieved good glycemic control and one patient who had received 5500 IE/kg in first islet infusion was able to stop insulin. Seven other patients decreased their insulin dose by 39% on exenatide. Hyperglycemic clamp studies showed a rise in second phase insulin release (before exenatide: 246+/-88 pM; during exenatide: 644+/-294 pM, P<0.01). Meal tolerance studies before and one month after stopping exenatide did not show a difference in glucose or C-peptide values. Nausea and vomiting were the major side effects. CONCLUSIONS: Exenatide stimulates insulin secretion in islet transplant recipients. It reduces insulin dose in some patients and may delay the need to resume insulin in others. We did not find any evidence of a trophic effect on islets.


Assuntos
Diabetes Mellitus Tipo 1/cirurgia , Hipoglicemiantes/uso terapêutico , Transplante das Ilhotas Pancreáticas/fisiologia , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Relação Dose-Resposta a Droga , Exenatida , Feminino , Técnica Clamp de Glucose , Humanos , Injeções Subcutâneas , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Peptídeos/administração & dosagem , Peçonhas/administração & dosagem
13.
Transplantation ; 84(1): 17-22, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17627232

RESUMO

BACKGROUND: The effect of islet cell transplantation (ICT) on renal function in type 1 diabetes is uncertain and some recent studies report a significant decline in estimated glomerular filtration rate (GFR) and worsening of albuminuria. METHODS: We are conducting a prospective crossover study comparing medical treatment with islet transplantation on the progression of diabetic complications, including renal function. The primary endpoint is change in GFR measured by Tc-diethylenetriaminepentaacetate with secondary endpoints including estimated GFR and albumin excretion. RESULTS: We have followed 21 patients after islet transplantation a median of 29 months (range 13-45) and compared their results with medically treated patients followed a median 29.5 months (range 13-56). There is no difference in the rate of decline in measured GFR between medically treated patients (-0.35+/-0.89; 95% CI: -0.57 to -0.13 mL/min/month/1.73 m) and those after ICT (-0.31+/-1.18; 95% CI: -0.61 to -0.01) and neither is significantly different from that expected for the general population. The rate of decline in our estimated GFR results is lower than that reported in other studies and we did not find any worsening of albuminuria. CONCLUSIONS: We do not find evidence of worsening of renal function after islet transplantation compared with medically treated patients.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/cirurgia , Nefropatias Diabéticas/fisiopatologia , Hipoglicemiantes/uso terapêutico , Transplante das Ilhotas Pancreáticas , Adulto , Idoso , Albuminúria/fisiopatologia , Glicemia/metabolismo , Estudos de Coortes , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/urina , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
14.
Mol Metab ; 6(8): 833-844, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752047

RESUMO

OBJECTIVES: ß-cell dysfunction and apoptosis associated with islet inflammation play a key role in the pathogenesis of type 2 diabetes (T2D). Growing evidence suggests that islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to islet inflammation and ß-cell death in T2D. We recently showed the role of interleukin-1ß (IL-1ß)/Fas/caspase-8 apoptotic pathway in amyloid-induced ß-cell death. In this study, we used human islets in culture as an ex vivo model of amyloid formation to: (1) investigate the effects of amyloid on islet levels of the natural IL-1 receptor antagonist (IL-1Ra); (2) examine if modulating the IL-1ß/IL-1Ra balance can prevent amyloid-induced ß-cell Fas upregulation and apoptosis. METHODS: Isolated human islets (n = 10 donors) were cultured in elevated glucose (to form amyloid) with or without a neutralizing human IL-1ß antibody for up to 7 days. Parallel studies were performed with human islets in which amyloid formation was prevented by adeno-siRNA-mediated suppression of hIAPP expression (as control). ß-cell levels of IL-1Ra, Fas, apoptosis as well as islet function, insulin- and amyloid-positive areas, and IL-1Ra release were assessed. RESULTS: Progressive amyloid formation in human islets during culture was associated with alterations in IL-1Ra. Islet IL-1Ra levels were higher at early stages but were markedly reduced at later stages of amyloid formation. Furthermore, IL-1Ra release from human islets was reduced during 7-day culture in a time-dependent manner. These changes in IL-1Ra production and release from human islets during amyloid formation adversely correlated with islet IL-1ß levels, ß-cell Fas expression and apoptosis. Treatment with IL-1ß neutralizing antibody markedly reduced amyloid-induced ß-cell Fas expression and apoptosis, thereby improving islet ß-cell survival and function during culture. CONCLUSIONS: These data suggest that amyloid formation impairs the balance between IL-1ß and IL-1Ra in islets by increasing IL-1ß production and reducing IL-1Ra levels thereby promoting ß-cell dysfunction and death. Restoring the IL-1ß/IL-1Ra ratio may provide an effective strategy to protect islet ß-cells from amyloid toxicity in T2D.


Assuntos
Amiloide/metabolismo , Apoptose , Células Secretoras de Insulina/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Adolescente , Adulto , Animais , Caspase 8/metabolismo , Linhagem Celular , Células Cultivadas , Proteína Ligante Fas/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade
15.
Cell Transplant ; 15(5): 399-410, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16970282

RESUMO

B7-H4, a recently described member of the B7 family of cosignal molecules, is thought to be involved in the regulation of cellular and humoral immune responses through receptors on activated T and B cells. Human islet cells express positive B7-H4 mRNA in RT-PCR assays, but not B7-H4 protein on cell surface in flow cytometric analyses. To investigate the regulatory effects of activation of the B7-H4 pathway on the function of activated T cells of patients with type 1 diabetes (T1D), we have used our in vitro human experimental system, including human beta-cell antigen-specific T-cell clones and human beta-cell lines CM and HP62, as well as primary islet cells. B7-H4.Ig protein was purified from the culture supernatant of 293T cells transfected by a B7-H4.Ig plasmid (pMIgV, containing a human B7-H4 cDNA and a mouse IgG2a Fc cDNA). Our preliminary studies showed that immobilized fusion protein human B7-H4.Ig (coated with 5 microg/ml for 2 h at 37 degrees C), but not control Ig, clearly inhibited the proliferation of activated CD4+ and CD8+ T cells of patients induced by anti-CD3 antibody in CFSE assays. B7-H4.Ig also arrested cell cycle progression of T cells in G0/G1 phase and induced T-cell apoptosis as measured by BrdU-7-AAD flow cytometric analysis. To determine the cytoprotective effects of B7-H4, we developed transfectants of human beta-cell lines CM and HP62 and islet cells transfected with the B7-H4.Ig plasmid, using empty vector transfectants as controls. The results demonstrate that cell-associated B7-H4.Ig expressed on human beta-cells clearly inhibits the cytotoxicity of the T-cell clones to targeted human beta-cells in 51Cr release cytotoxicity assays. Activation of the B7-H4 pathway may represent a novel immunotherapeutic approach to inhibit T-cell responses for the prevention of beta-cell destruction in T1D.


Assuntos
Antígeno B7-1/metabolismo , Células Secretoras de Insulina/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Humanos , Imunoglobulinas/metabolismo , Imunoglobulinas/fisiologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/citologia , Linfócitos T/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set
16.
Islets ; 8(2): 48-56, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909740

RESUMO

Worldwide efforts are underway to replace or repair lost or dysfunctional pancreatic ß-cells to cure diabetes. However, it is unclear what the final product of these efforts should be, as ß-cells are thought to be heterogeneous. To enable the analysis of ß-cell heterogeneity in an unbiased and quantitative way, we developed model-free and model-based statistical clustering approaches, and created new software called TraceCluster. Using an example data set, we illustrate the utility of these approaches by clustering dynamic intracellular Ca(2+) responses to high glucose in ∼300 simultaneously imaged single islet cells. Using feature extraction from the Ca(2+) traces on this reference data set, we identified 2 distinct populations of cells with ß-like responses to glucose. To the best of our knowledge, this report represents the first unbiased cluster-based analysis of human ß-cell functional heterogeneity of simultaneous recordings. We hope that the approaches and tools described here will be helpful for those studying heterogeneity in primary islet cells, as well as excitable cells derived from embryonic stem cells or induced pluripotent cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Software
17.
Arch Surg ; 140(8): 735-44, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16103282

RESUMO

HYPOTHESIS: A local multiorgan donor pancreas procurement program can provide a source for optimized isolation of purified viable islets for transplantation into patients with type 1 diabetes mellitus receiving best medical therapy. DESIGN: Prospective before-after cohort study. SETTING: Tertiary referral center. PATIENTS: Glycemic control was assessed in 10 patients with diabetes-induced renal dysfunction who were enrolled in a best medical therapy program and then crossed over to islet transplantation. INTERVENTIONS: Thirty human pancreata were retrieved from local multiorgan donors and consecutively processed with intraductal collagenase perfusion, continuous digestion, and density gradient purification (group 1, n = 9) or similarly processed but impure tissue fractions cultured in vitro and then repurified to retrieve additional islets (group 2, n = 21). Islets were implanted by percutaneous portal embolization, providing more than 10 000 islet equivalents (IE) per kilogram of body weight (infusions from 1-3 donors per patient) under cover of antithymocyte globulin, sirolimus, or mycophenolate mofetil and tacrolimus. MAIN OUTCOME MEASURES: Islet yields, purity, and cell viability (caspase 3, terminal deoxynucleotidyl transferase-mediated biotin-deoxyuridine 5-triphosphate nick-end labeling stain, and insulin secretion in vitro) were compared. In patients, monitored metabolic parameters were C-peptide secretion, insulin requirements, glycemic excursion, and hemoglobin A(1c) (HbA(1c)). RESULTS: For group 1 vs group 2, no differences were observed in pancreas age (43 vs 44 years), cold storage (5 vs 4 hours), or weight (73 vs 82 g). Group 2 yielded 453 690 IE vs 214 109 IE in group 1 (P = .002). Grafts contained 50% or more endocrine cells in both groups. No difference occurred in cell viability or insulin secretion. Islets from 90% of group 2 pancreata met release criteria for transplantation. C-peptide secretion was detected in all recipients and persisted with a median follow-up to 12 months (range, 6-21 months) after full islet transplantation. Daily insulin dependence was reversed in all patients for at least 3 months. Five patients resumed small insulin doses. Compared with the best care program, all patients had improved metabolic stability. The mean +/- SE HbA(1c) level at entry into the study was 7.8% +/- 0.5%, and this decreased to 6.9% +/- 0.2% after best care (P = .38) and further to 6.2% +/- 0.2% at 6 months after transplantation (P = .002 vs entry; P = .15 vs best care; analysis of variance). CONCLUSIONS: Local pancreas donor retrieval with islet isolation and culture conditioning enabled an offer of islets for transplantation for 90% of consecutively processed pancreata. Isolated islets secreted insulin during prolonged follow-up after implantation into patients, yielding metabolic control comparable with that achieved by best medical therapy.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/cirurgia , Insulina/uso terapêutico , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Imunologia de Transplantes/fisiologia , Adulto , Análise de Variância , Glicemia/análise , Estudos de Coortes , Diabetes Mellitus Tipo 1/diagnóstico , Feminino , Seguimentos , Rejeição de Enxerto , Sobrevivência de Enxerto , Humanos , Transplante das Ilhotas Pancreáticas/efeitos adversos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Probabilidade , Estudos Prospectivos , Medição de Risco , Índice de Gravidade de Doença , Coleta de Tecidos e Órgãos , Resultado do Tratamento
18.
Pancreas ; 43(1): 128-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24326367

RESUMO

OBJECTIVES: B7-H4 is a negative coregulatory molecule known to be involved in immune response. We study here B7-H4 expression and its possible role in diabetes and cancer development. METHODS: Formalin-fixed, paraffin-processed pancreas samples from patients with type 1 diabetes (T1D), insulinoma, pancreatic ductal adenocarcinoma (PDAC), and normal organ donors were studied by bright-field and multifluorescence immunohistochemistry to examine B7-H4 expression and its colocalization with islet endocrine hormones. Quantitative RT-PCR and Western blot assay were used to examine B7-H4 mRNA and protein expression in the islet and exocrine tissues from normal donors and pancreatic cancer cell lines. RESULTS: B7-H4 protein expression in islet ß cells is decreased in T1D and PDAC, but increased in insulinoma patients when compared to normal controls; the changes in B7-H4 expression are concomitant with insulin expression on the islet ß cells. The insulin/B7-H4 colocalization on the ß cells, expressed in colocalization coefficient Pearson r, is also changed in these islets. CONCLUSIONS: Our observation of altered B7-H4 expression, concomitant with insulin expression, in the pancreatic islets of T1D, PDAC, and insulinoma patients when compared to normal controls suggests that B7-H4 pathway might play an important role in maintenance of ß-cell function, but its exact role remains to be explored.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Western Blotting , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 1/genética , Expressão Gênica , Humanos , Imuno-Histoquímica , Insulina/genética , Insulina/metabolismo , Insulinoma/genética , Insulinoma/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética
19.
Transplantation ; 95(1): 94-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23192157

RESUMO

BACKGROUND: Allograft rejection is one of the main obstacles for islet transplantation. B7-H4 plays a key role in maintaining T-cell homeostasis by reducing T-cell proliferation and cytokine production. In this study, we investigated whether the endogenous expression of B7-H4 in ß cells from B7-H4 transgenic mice enhances islet allograft survival. METHODS: B7-H4 transgenic C57BL/6 (B6) mice (RIP.B7-H4) were developed by inserting the entire B7-H4 open reading frame under the rat insulin promoter (RIP). B7-H4 protein expression was examined by flow cytometric analysis and immunohistochemical staining. Islet allograft survival was investigated in streptozotocin-induced diabetic recipient BALB/c (H-2d) mice transplanted with 400 islets from RIP.B7-H4 (H-2b) mice under the kidney capsule. The recipient control group received islets from wild-type B6 donors. RESULTS: B7-H4 protein was significantly up-regulated in isolated islets from RIP.B7-H4 compared with wild-type B6 mice (56%±23% vs. 3%±1.2%). B7-H4 was coexpressed with insulin, but not glucagon, suggesting that B7-H4 is expressed in a ß-cell-specific manner. Recipient BALB/c mice transplanted with RIP.B7-H4 islets established euglycemia for 42.3±18.4 days (mean±SD; n=9) compared with controls at 23.1±7.8 days (mean±SD; n=12; P<0.004, log-rank test). CONCLUSIONS: The endogenous expression of B7-H4 in donor ß cells from transgenic mice prolongs islet allograft survival, confirming the negative role of B7-H4 in regulating alloreactive T-cell responses.


Assuntos
Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas , Inibidor 1 da Ativação de Células T com Domínio V-Set/fisiologia , Animais , Antígenos CD28/fisiologia , Antígeno CTLA-4/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Linfócitos T/imunologia , Transplante Homólogo
20.
Int J Endocrinol ; 2012: 414812, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22611393

RESUMO

Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell) source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA