Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163826

RESUMO

Ophiobolins are a group of sesterterpenoids with a 5-8-5 tricyclic skeleton. They exhibit a significant cytotoxicity and present potential medicinal prospects. However, the biosynthesis and transport mechanisms of these valuable compounds have not been fully resolved. Herein, based on a transcriptome analysis, gene inactivation, heterologous expression and feeding experiments, we fully explain the biosynthesis pathway of ophiobolin K in Aspergillus ustus 094102, especially proved to be an unclustered oxidase OblCAu that catalyzes dehydrogenation at the site of C16 and C17 of both ophiobolin F and ophiobolin C. We also find that the intermediate ophiobolin C and final product ophiobolin K could be transported into a space between the cell wall and membrane by OblDAu to avoid the inhibiting of cell growth, which is proved by a fluorescence observation of the subcellular localization and cytotoxicity tests. This study completely resolves the biosynthesis mechanism of ophiobolins in strain A. ustus 094102. At the same time, it is revealed that the burden of strain growth caused by the excessive accumulation and toxicity of secondary metabolites is closely related to compartmentalized biosynthesis.


Assuntos
Antineoplásicos/farmacologia , Aspergillus/crescimento & desenvolvimento , Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Sesterterpenos/farmacologia , Antineoplásicos/química , Aspergillus/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Hidrogenação , Metabolismo Secundário , Análise de Sequência de RNA , Sesterterpenos/química , Ativação Transcricional
2.
Adv Sci (Weinh) ; : e2407709, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225620

RESUMO

Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA