Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 22(7): 7733-43, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718149

RESUMO

We report low-loss deep-etch AlGaAs optical waveguides fabricated with nitrogen plasma-assisted photoresist reflow. The simultaneous application of a nitrogen plasma and heat is used to reduce the line edge roughness of patterned photoresist and limit the lateral spread of the photoresist patterns of submicron-scale waveguides. Comparison of the edge roughness of the etched sidewalls between the as-developed and smoothed photoresist etch samples show a reduction of the RMS roughness from 3.39±0.17 nm to 1.39±0.03 nm. The reduction in propagation loss is verified by measured waveguide loss as a function of waveguide widths. A 0.65-µm wide waveguide with a modal area of 0.4 µm(2) is fabricated with a propagation loss as low as 1.20±0.13 dB/cm for the transverse-electric mode.

2.
Opt Express ; 22(22): 26814-24, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401828

RESUMO

Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.

3.
Opt Lett ; 39(11): 3161-4, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24876002

RESUMO

We present a side-by-side comparison of the nonlinear behavior of four passive AlGaAs ridge waveguides where the bandgap energy of the core layers ranges from 1.60 to 1.79 eV. By engineering the bandgap to suppress two-photon absorption, minimizing the linear loss, and minimizing the mode area, we achieve efficient wavelength conversion in the C-band via partially degenerate four-wave mixing with a continuous-wave pump. The observed conversion efficiency [Idler(OUT)/Signal(IN)=-6.8 dB] is among the highest reported in passive semiconductor or glass waveguides.

4.
Opt Express ; 17(5): 3396-406, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259177

RESUMO

We report an experimental investigation of the nonlinear optical properties of nanoporous silicon optical waveguides measured at 1550 nm. The nonlinear properties including two-photon absorption, self-phase modulation, free-carrier absorption and free-carrier plasma dispersion are characterized and compared with similar measurements conducted on a conventional silicon-on-insulator ridge waveguide. Our study reveals that even waveguides that are 70% porous exhibit two-photon absorption and self-phase modulation coefficients that are comparable to those of crystalline silicon. The free-carrier absorption and dispersion in porous silicon waveguides are found to be significantly faster, and stronger than those reported for crystalline silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA