Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pharmacol Exp Ther ; 388(2): 576-585, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37541763

RESUMO

Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Ratos , Animais , Gás de Mostarda/toxicidade , Mesna/farmacologia , Mesna/uso terapêutico , Antídotos/farmacologia , Antídotos/uso terapêutico , Pulmão , Sódio , Substâncias para a Guerra Química/toxicidade
2.
J Head Trauma Rehabil ; 38(4): 283-293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730957

RESUMO

OBJECTIVE: A systematic review of the literature was conducted to identify measures used to evaluate developmental outcomes after abusive head trauma (AHT), as well as describe outcomes among those with AHT, and explore factors and interventions influencing such outcomes. DESIGN: This systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. The protocol is in PROSPERO, registration number CRD42020179592. On April 17, 2020, OVID Medline, Embase, OVID PsycINFO, Web of Science, CINAHL, Cochrane Library, and Google Scholar were searched (since inception). Inclusion criteria included original, peer-reviewed study data; AHT exposure; infants younger than 24 months at time of AHT; and evaluation of developmental outcomes. Reviewers independently evaluated studies for inclusion and assessed risk of bias using the Effective Public Health Practice Project quality assessment tool for quantitative studies. A descriptive synthesis approach was utilized as variability of study designs, follow-up periods, and outcome assessment tools precluded a meta-analytic approach. RESULTS: Fifty-nine studies were included; 115 assessment tools were used to evaluate developmental outcomes; and 42 studies examined factors influencing outcomes. Two studies evaluated interventions. Five percent of studies ( n = 3) were rated low risk of bias. CONCLUSIONS: Notable variation was observed in terms of case ascertainment criteria. Developmental outcomes after AHT have been assessed in a manner that limits understanding of how AHT impacts development, as well as the efficacy of interventions intended to improve outcomes. Researchers and clinicians are encouraged to adopt consistent diagnostic and assessment approaches.


Assuntos
Maus-Tratos Infantis , Desenvolvimento Infantil , Traumatismos Cranianos Fechados , Humanos , Lactente , Traumatismos Cranianos Fechados/complicações
3.
Anal Chem ; 88(12): 6523-30, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27161086

RESUMO

Several methods for the bioanalysis of nerve agents or their metabolites have been developed for the verification of nerve agent exposure. However, parent nerve agents and known metabolites are generally rapidly excreted from biological matrixes typically used for analysis (i.e., blood, urine, and tissues), limiting the amount of time after an exposure that verification is feasible. In this study, hair was evaluated as a long-term repository of nerve agent hydrolysis products. Pinacolyl methylphosphonic acid (PMPA; hydrolysis product of soman) and isopropyl methylphosphonic acid (IMPA; hydrolysis product of sarin) were extracted from hair samples with N,N-dimethylformamide and subsequently analyzed by liquid chromatography-tandem mass spectrometry. Limits of detection for PMPA and IMPA were 0.15 µg/kg and 7.5 µg/kg and linear ranges were 0.3-150 µg/kg and 7.5-750 µg/kg, respectively. To evaluate the applicability of the method to verify nerve agent exposure well after the exposure event, rats were exposed to soman, hair was collected after approximately 30 days, and stored for up to 3.5 years prior to initial analysis. PMPA was positively identified in 100% of the soman-exposed rats (N = 8) and was not detected in any of the saline treated animals (N = 6). The hair was reanalyzed 5.5 years after exposure and PMPA was detected in 6 of the 7 (one of the soman-exposed hair samples was completely consumed in the analysis at 3.5 years) rat hair samples (with no PMPA detected in the saline exposed animals). Although analysis of CWA metabolites from hair via this technique is not appropriate as a universal method to determine exposure (i.e., it takes time for the hair to grow above the surface of the skin and typical analysis times are >24 h), it complements existing methods and could become the preferred method for verification of exposure if 10 or more days have elapsed after a suspected exposure.


Assuntos
Substâncias para a Guerra Química/análise , Cabelo/química , Agentes Neurotóxicos/análise , Compostos Organofosforados/análise , Soman/análogos & derivados , Substâncias para a Guerra Química/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cabelo/metabolismo , Humanos , Limite de Detecção , Agentes Neurotóxicos/metabolismo , Compostos Organofosforados/metabolismo , Sarina/análise , Sarina/metabolismo , Soman/análise , Soman/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
4.
mBio ; 15(4): e0006924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470268

RESUMO

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, is responsible for causing a wide variety of invasive infections. The emergence of multi-drug antibiotic resistance has prompted the search for antimicrobial alternatives. Phage-derived peptidoglycan hydrolases, known as endolysins, are an attractive alternative. In this study, an endolysin active against Spn, designated SP-CHAP, was cloned, produced, purified, biochemically characterized, and evaluated for its antimicrobial properties. Cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domains are widely represented in bacteriophage endolysins but have never previously been reported for pneumococcal endolysins. Here, we characterize the first pneumococcal endolysin with a CHAP catalytic domain. SP-CHAP was antimicrobial against all Spn serovars tested, including capsular and capsule-free pneumococci, and it was found to be more active than the most widely studied pneumococcal endolysin, Cpl-1, while not affecting various oral or nasal commensal organisms tested. SP-CHAP was also effective in eradicating Spn biofilms at concentrations as low as 1.56 µg/mL. In addition, a Spn mouse nasopharyngeal colonization model was employed, which showed that SP-CHAP caused a significant reduction in Spn colony-forming units, even more than Cpl-1. These results indicate that SP-CHAP may represent a promising alternative to combating Spn infections. IMPORTANCE: Considering the high rates of pneumococcal resistance reported for several antibiotics, alternatives are urgently needed. In the present study, we report a Streptococcus pneumoniae-targeting endolysin with even greater activity than Cpl-1, the most characterized pneumococcal endolysin to date. We have employed a combination of biochemical and microbiological assays to assess the stability and lytic potential of SP-CHAP and demonstrate its efficacy on pneumococcal biofilms in vitro and in an in vivo mouse model of colonization. Our findings highlight the therapeutic potential of SP-CHAP as an antibiotic alternative to treat Streptococcus pneumoniae infections.


Assuntos
Bacteriófagos , Infecções Pneumocócicas , Animais , Camundongos , Peptídeo Hidrolases , Streptococcus pneumoniae , Cisteína , Histidina , Amidoidrolases , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Bacteriófagos/genética , Biofilmes
5.
Artigo em Inglês | MEDLINE | ID: mdl-27474780

RESUMO

While several methods for the bioanalysis of nerve agents or their metabolites have been developed for the verification of nerve agent exposure, these methods are generally limited in the amount of time after an exposure that markers of exposure can be detected (due to rapid metabolism from biological matrices). In this study, a method for the analysis of nerve agent hydrolysis products from nail clippings was developed to allow evaluation of nails as a long-term repository of these markers. Pinacolyl methylphosphonic acid (PMPA) and isopropyl methylphosphonic acid (IMPA) were extracted from nail samples with N,N-dimethylformamide and subsequently analyzed by liquid chromatography-tandem mass spectrometry. Limits of detection for PMPA and IMPA were 0.3µg/kg and 7.5µg/kg and linear ranges were 0.75-300µg/kg and 30-1500µg/kg, respectively. Precision was within 10% and 8% for PMPA and IMPA, respectively, and accuracy was 100±12% for both analytes. The approach presented here is complementary to current methods for nerve agent exposure verification, and should allow for long-term determination of nerve agent poisoning.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Unhas/metabolismo , Agentes Neurotóxicos/metabolismo , Espectrometria de Massas em Tandem/métodos , Calibragem , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA