Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Bacteriol ; 203(24): e0043921, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606370

RESUMO

Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.


Assuntos
Endotélio Vascular/metabolismo , Viabilidade Microbiana , Piruvato Oxidase/metabolismo , Streptococcus pneumoniae/enzimologia , Transcitose/fisiologia , Barreira Hematoencefálica , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Piruvato Oxidase/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
2.
Nutr Cancer ; 66(7): 1179-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25264717

RESUMO

Obesity is the leading preventable comorbidity associated with increased prostate cancer-related recurrence and mortality. Epidemiological and clinical studies indicate that a body mass index >30 is associated with increased oxidative DNA damage within the prostate gland and increased prostate cancer-related mortality. Here we provide evidence that obesity promotes worse clinical outcome through induction of metabolic abnormalities known to promote genotoxic stress. We have previously reported that blood serum derived from obese mice may enhance the proliferative and invasive potential of human prostate cancer cell lines ex vivo. Here we show that a 1-h exposure of LNCaP or PacMetUT1 prostate cancer cell lines and nonmalignant RWPE-1 prostate epithelial cells to 2% serum from obese mice induces markers of aerobic glycolysis relative to those exposed to serum from nonobese mice. This metabolic change was correlated with accumulation of reactive oxygen species (ROS) and increased frequency of DNA double-strand breaks. Interestingly, N-tert-Butylhydroxylamine, an antioxidant, significantly suppressed markers of aerobic glycolysis in the cells exposed to the blood serum of obese mice, suggesting that ROS contributes to a metabolic shift toward aerobic glycolysis. Here we describe obesity-induced changes in key metabolic markers that impact prostate cancer cell progression and explore the role of antioxidants in ameliorating these effects.


Assuntos
Glicólise , Obesidade/fisiopatologia , Neoplasias da Próstata/fisiopatologia , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Hidroxilaminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estresse Oxidativo/efeitos dos fármacos , Piruvato Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes
3.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282383

RESUMO

A central signal that marshals host defense against many infections is the lymphocyte-derived cytokine interferon-gamma (IFNγ). The IFNγ receptor is expressed on most human cells and its activation leads to the expression of antimicrobial proteins that execute diverse cell-autonomous immune programs. One such immune program consists of the sequential detection, ubiquitylation, and destruction of intracellular pathogens. Recently, the IFNγ-inducible ubiquitin E3 ligase RNF213 was identified as a pivotal mediator of such a defense axis. RNF213 provides host protection against viral, bacterial, and protozoan pathogens. To establish infections, potentially susceptible intracellular pathogens must have evolved mechanisms that subdue RNF213-controlled cell-autonomous immunity. In support of this hypothesis, we demonstrate here that a causative agent of bacillary dysentery, Shigella flexneri, uses the type III secretion system (T3SS) effector IpaH1.4 to induce the degradation of RNF213. S. flexneri mutants lacking IpaH1.4 expression are bound and ubiquitylated by RNF213 in the cytosol of IFNγ-primed host cells. Linear (M1-) and lysine-linked ubiquitin is conjugated to bacteria by RNF213 independent of the linear ubiquitin chain assembly complex (LUBAC). We find that ubiquitylation of S. flexneri is insufficient to kill intracellular bacteria, suggesting that S. flexneri employs additional virulence factors to escape from host defenses that operate downstream from RNF213-driven ubiquitylation. In brief, this study identified the bacterial IpaH1.4 protein as a direct inhibitor of mammalian RNF213 and highlights evasion of RNF213-driven immunity as a characteristic of the human-tropic pathogen Shigella.

4.
Nutr Cancer ; 65(4): 556-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23659447

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men. Studies show that consumption of polyunsaturated fatty acids (PUFA) modulates the development and progression of prostate cancer. High amounts of omega-6 fatty acids have been linked with increased prostate cancer risk, whereas omega-3 fatty acids have been shown to inhibit PCa growth. However, because omega-3 and omega-6 are both essential fatty acids and part of a complete diet, it is more relevant to determine the ideal ratio of the two that would allow patients to benefit from the therapeutic properties of omega-3 fatty acids. LNCaP prostate cancer cells were treated with dietary-based ratios of omega-6 to omega-3 fatty acids under hormone-deprivation conditions, and effects on various cellular processes were determined. A low omega-6 to omega-3 PUFA ratio can delay the progression of cells toward castration-resistance by suppressing pathways involved in prostate cancer progression, such as the Akt/mTOR/NFκB axis. It also suppresses the expression of cyclin D1, and activation of caspase-3 and annexin V staining shows induction of proapoptotic events. Taken together, our data demonstrates that maintaining a low omega-6 to omega-3 fatty acids ratio can enhance efficacy of hormone ablation therapy.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Neoplasias da Próstata/dietoterapia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Humanos , Masculino , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
J Mol Med (Berl) ; 101(4): 375-385, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808265

RESUMO

Familial adenomatous polyposis (FAP) is a precancerous, colorectal disease characterized by hundreds to thousands of adenomatous polyps caused by mutations in the tumor suppressor gene adenomatous polyposis coli (APC). Approximately 30% of these mutations are premature termination codons (PTC), resulting in the production of a truncated, dysfunctional APC protein. Consequently, the ß-catenin degradation complex fails to form in the cytoplasm, leading to elevated nuclear levels of ß-catenin and unregulated ß-catenin/wnt-pathway signaling. We present in vitro and in vivo data demonstrating that the novel macrolide, ZKN-0013, promotes read through of premature stop codons, leading to functional restoration of full-length APC protein. Human colorectal carcinoma SW403 and SW1417 cells harboring PTC mutations in the APC gene showed reduced levels of nuclear ß-catenin and c-myc upon treatment with ZKN-0013, indicating that the macrolide-mediated read through of premature stop codons produced bioactive APC protein and inhibited the ß-catenin/wnt-pathway. In a mouse model of adenomatous polyposis coli, treatment of APCmin mice with ZKN-0013 caused a significant decrease in intestinal polyps, adenomas, and associated anemia, resulting in increased survival. Immunohistochemistry revealed decreased nuclear ß-catenin staining in the epithelial cells of the polyps in ZKN-0013-treated APCmin mice, confirming the impact on the ß-catenin/wnt-pathway. These results indicate that ZKN-0013 may have therapeutic potential for the treatment of FAP caused by nonsense mutations in the APC gene. KEY MESSAGES: • ZKN-0013 inhibited the growth of human colon carcinoma cells with APC nonsense mutations. • ZKN-0013 promoted read through of premature stop codons in the APC gene. • In APCmin mice, ZKN-0013 treatment reduced intestinal polyps and their progression to adenomas. • ZKN-0013 treatment in APCmin mice resulted in reduced anemia and increased survival.


Assuntos
Adenoma , Polipose Adenomatosa do Colo , Humanos , Animais , Camundongos , Genes APC , beta Catenina/metabolismo , Códon sem Sentido , Polipose Adenomatosa do Colo/tratamento farmacológico , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Adenoma/genética , Macrolídeos , Pólipos Intestinais/genética
6.
Cancer Res Commun ; 3(6): 969-979, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377612

RESUMO

Ribosomes in cancer cells accumulate numerous patient-specific structural and functional modifications that facilitate tumor progression by modifying protein translation. We have taken a unique synthetic chemistry approach to generate novel macrolides, Ribosome modulating agents (RMA), that are proposed to act distal to catalytic sites and exploit cancer ribosome heterogeneity. The RMA ZKN-157 shows two levels of selectivity: (i) selective translation inhibition of a subset of proteins enriched for components of the ribosome and protein translation machinery that are upregulated by MYC; and (ii) selective inhibition of proliferation of a subset of colorectal cancer cell lines. Mechanistically, the selective ribosome targeting in sensitive cells triggered cell-cycle arrest and apoptosis. Consequently, in colorectal cancer, sensitivity to ZKN-157 in cell lines and patient-derived organoids was restricted to the consensus molecular subtype 2 (CMS2) subtype that is distinguished by high MYC and WNT pathway activity. ZKN-157 showed efficacy as single agent and, the potency and efficacy of ZKN-157 synergized with clinically approved DNA-intercalating agents which have previously been shown to inhibit ribogenesis as well. ZKN-157 thus represents a new class of ribosome modulators that display cancer selectivity through specific ribosome inhibition in the CMS2 subtype of colorectal cancer potentially targeting MYC-driven addiction to high protein translation. Significance: This study demonstrates that ribosome heterogeneity in cancer can be exploited to develop selective ribogenesis inhibitors. The colorectal cancer CMS2 subtype, with a high unmet need for therapeutics, shows vulnerability to our novel selective ribosome modulator. The mechanism suggests that other cancer subtypes with high MYC activation could also be targeted.


Assuntos
Neoplasias Colorretais , Biossíntese de Proteínas , Ribossomos , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ribossomos/genética , Ribossomos/metabolismo , Pontos de Checagem do Ciclo Celular
7.
Sci Adv ; 9(12): eade1851, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947610

RESUMO

Sensing of pathogens by ubiquitination is a critical arm of cellular immunity. However, universal ubiquitination targets on microbes remain unidentified. Here, using in vitro, ex vivo, and in vivo studies, we identify the first protein-based ubiquitination substrates on phylogenetically diverse bacteria by unveiling a strategy that uses recognition of degron-like motifs. Such motifs form a new class of intra-cytosolic pathogen-associated molecular patterns (PAMPs). Their incorporation enabled recognition of nonubiquitin targets by host ubiquitin ligases. We find that SCFFBW7 E3 ligase, supported by the regulatory kinase, glycogen synthase kinase 3ß, is crucial for effective pathogen detection and clearance. This provides a mechanistic explanation for enhanced risk of infections in patients with chronic lymphocytic leukemia bearing mutations in F-box and WD repeat domain containing 7 protein. We conclude that exploitation of this generic pathogen sensing strategy allows conservation of host resources and boosts antimicrobial immunity.


Assuntos
Proteínas F-Box , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação , Ubiquitinação , Bactérias/metabolismo
8.
NAR Cancer ; 4(1): zcac006, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252868

RESUMO

Persistent pathogen infection is a known cause of malignancy, although with sparse systematic evaluation across tumor types. We present a comprehensive landscape of 1060 infectious pathogens across 239 whole exomes and 1168 transcriptomes of breast, lung, gallbladder, cervical, colorectal, and head and neck tumors. We identify known cancer-associated pathogens consistent with the literature. In addition, we identify a significant prevalence of Fusobacterium in head and neck tumors, comparable to colorectal tumors. The Fusobacterium-high subgroup of head and neck tumors occurs mutually exclusive to human papillomavirus, and is characterized by overexpression of miRNAs associated with inflammation, elevated innate immune cell fraction and nodal metastases. We validate the association of Fusobacterium with the inflammatory markers IL1B, IL6 and IL8, miRNAs hsa-mir-451a, hsa-mir-675 and hsa-mir-486-1, and MMP10 in the tongue tumor samples. A higher burden of Fusobacterium is also associated with poor survival, nodal metastases and extracapsular spread in tongue tumors defining a distinct subgroup of head and neck cancer.

9.
Prostate ; 71(13): 1420-8, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21360560

RESUMO

BACKGROUND: Oxidative burden is strongly implicated in the pathogenesis of age-related diseases, including prostate cancer tumor formation. As omega-3 fatty acids possess known antioxidant properties, we investigated the effects of docosahexaenoic acid (DHA-22:6n-3), one component of fish oil, in modulating the effects of oxidative DNA damage in LNCaP and PacMetUT1 human prostate adenocarcinoma cells and in a normal human prostate cell line, PrEC. METHODS: Cell survival was determined by an inhibition of colony formation assay. DNA double-strand breaks, NF-κB subcellular localization and relative survivin expression levels were determined by immunofluorescence and survivin expression levels confirmed by immunoblot assay. Measurement of NF-κB transcriptional activity was investigated by dual luciferase assay. RESULTS: LNCaP and PacMetUT1 cells pretreated with DHA and pulsed with 32 µM H(2) O(2) exhibit decreased survival compared to PrEC. γ-H2AX foci, indicating DNA double-strand breaks, were associated with translocation of NF-κB into the nucleus, whereas exposure to DHA prior to H(2) O(2) treatment prevented NF-κB translocation. Further, DHA attenuated H(2) O(2) -induced NF-κB transcriptional activity and diminished expression of the downstream target, survivin. CONCLUSIONS: NF-κB is heavily implicated in promoting prosurvival signaling and may be critical for resistance to the chronic oxidative stress observed in the pathogenesis of prostate cancer. Our studies indicate that exposure of cells to physiologically achievable levels of DHA prior to treatment with H(2) O(2) results in decreased cancer cell survival which is associated with nuclear exclusion of NF-κB. We therefore propose that DHA selectively sensitizes prostate cancer cells to growth arrest through attenuation of the NF-κB survival pathway.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , NF-kappa B/antagonistas & inibidores , Estresse Oxidativo , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Survivina
10.
Curr Res Microb Sci ; 1: 62-68, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34841302

RESUMO

Adoption of an endocytosis route promoting safe intracellular trafficking is a pre-requisite for development of invasive diseases by Streptococcus pneumoniae (SPN). We aim to explore the contribution of various endocytic routes in internalization and survival of SPN in blood brain barrier (BBB), a key event in development of pneumococcal meningitis. Pneumococcal entry and survival in brain endothelial cells were evaluated following treatment with combinations of inhibitors to block multiple endocytosis pathways leaving a single entry port open. Entry of SPN into brain endothelium through a novel dynamin independent pathway dictates a separate downstream trafficking itinerary. This allows SPN to evade lysosomal degradation, potentially promoting safe transit across BBB, leading to development of meningitis.

11.
ACS Med Chem Lett ; 11(6): 1205-1212, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551002

RESUMO

Histone methyltransferase EZH2, which is the catalytic subunit of the PRC2 complex, catalyzes the methylation of histone H3K27-a transcriptionally repressive post-translational modification (PTM). EZH2 is commonly mutated in hematologic malignancies and frequently overexpressed in solid tumors, where its expression level often correlates with poor prognosis. First generation EZH2 inhibitors are beginning to show clinical benefit, and we believe that a second generation EZH2 inhibitor could further build upon this foundation to fully realize the therapeutic potential of EZH2 inhibition. During our medicinal chemistry campaign, we identified 4-thiomethyl pyridone as a key modification that led to significantly increased potency and prolonged residence time. Leveraging this finding, we optimized a series of EZH2 inhibitors, with enhanced antitumor activity and improved physiochemical properties, which have the potential to expand the clinical use of EZH2 inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA