Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 618(7965): 566-574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258669

RESUMO

The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Axônios/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurônios/fisiologia
2.
Hum Brain Mapp ; 45(4): e26640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445545

RESUMO

Voxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings. Moreover, they are restricted to a single spatial resolution scale, precluding the opportunity to distinguish anatomical variations that are expressed across multiple scales. Drawing on concepts from classical physics, here we develop an approach, called mode-based morphometry (MBM), that can describe any empirical map of anatomical variations in terms of the fundamental, resonant modes-eigenmodes-of brain anatomy, each tied to a specific spatial scale. Hence, MBM naturally yields a multiscale characterization of the empirical map, affording new opportunities for investigating the spatial frequency content of neuroanatomical variability. Using simulated and empirical data, we show that the validity and reliability of MBM are either comparable or superior to classical vertex-based SBM for capturing differences in cortical thickness maps between two experimental groups. Our approach thus offers a robust, accurate, and informative method for characterizing empirical maps of neuroanatomical variability that can be directly linked to a generative physical process.


Assuntos
Encéfalo , Neuroanatomia , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Cabeça , Neuroimagem
3.
Brain ; 146(1): 372-386, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35094052

RESUMO

Dysfunction of fronto-striato-thalamic (FST) circuits is thought to contribute to dopaminergic dysfunction and symptom onset in psychosis, but it remains unclear whether this dysfunction is driven by aberrant bottom-up subcortical signalling or impaired top-down cortical regulation. We used spectral dynamic causal modelling of resting-state functional MRI to characterize the effective connectivity of dorsal and ventral FST circuits in a sample of 46 antipsychotic-naïve first-episode psychosis patients and 23 controls and an independent sample of 36 patients with established schizophrenia and 100 controls. We also investigated the association between FST effective connectivity and striatal 18F-DOPA uptake in an independent healthy cohort of 33 individuals who underwent concurrent functional MRI and PET. Using a posterior probability threshold of 0.95, we found that midbrain and thalamic connectivity were implicated as dysfunctional across both patient groups. Dysconnectivity in first-episode psychosis patients was mainly restricted to the subcortex, with positive symptom severity being associated with midbrain connectivity. Dysconnectivity between the cortex and subcortical systems was only apparent in established schizophrenia patients. In the healthy 18F-DOPA cohort, we found that striatal dopamine synthesis capacity was associated with the effective connectivity of nigrostriatal and striatothalamic pathways, implicating similar circuits to those associated with psychotic symptom severity in patients. Overall, our findings indicate that subcortical dysconnectivity is evident in the early stages of psychosis, that cortical dysfunction may emerge later in the illness, and that nigrostriatal and striatothalamic signalling are closely related to striatal dopamine synthesis capacity, which is a robust marker for psychosis.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Dopamina/metabolismo , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Di-Hidroxifenilalanina , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia
4.
Cereb Cortex ; 33(12): 7642-7658, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929009

RESUMO

Schizophrenia is a debilitating neuropsychiatric disorder whose underlying correlates remain unclear despite decades of neuroimaging investigation. One contentious topic concerns the role of global signal (GS) fluctuations and how they affect more focal functional changes. Moreover, it has been difficult to pinpoint causal mechanisms of circuit disruption. Here, we analyzed resting-state fMRI data from 47 schizophrenia patients and 118 age-matched healthy controls and used dynamical analyses to investigate how global fluctuations and other functional metastable states are affected by this disorder. We found that brain dynamics in the schizophrenia group were characterized by an increased probability of globally coherent states and reduced recurrence of a substate dominated by coupled activity in the default mode and limbic networks. We then used the in silico perturbation of a whole-brain model to identify critical areas involved in the disease. Perturbing a set of temporo-parietal sensory and associative areas in a model of the healthy brain reproduced global pathological dynamics. Healthy brain dynamics were instead restored by perturbing a set of medial fronto-temporal and cingulate regions in the model of pathology. These results highlight the relevance of GS alterations in schizophrenia and identify a set of vulnerable areas involved in determining a shift in brain state.


Assuntos
Esquizofrenia , Humanos , Encéfalo , Mapeamento Encefálico , Giro do Cíngulo , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos
5.
Neuroimage ; 256: 119051, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276367

RESUMO

Large-scale dynamics of the brain are routinely modelled using systems of nonlinear dynamical equations that describe the evolution of population-level activity, with distinct neural populations often coupled according to an empirically measured structural connectivity matrix. This modelling approach has been used to generate insights into the neural underpinnings of spontaneous brain dynamics, as recorded with techniques such as resting state functional MRI (fMRI). In fMRI, researchers have many degrees of freedom in the way that they can process the data and recent evidence indicates that the choice of pre-processing steps can have a major effect on empirical estimates of functional connectivity. However, the potential influence of such variations on modelling results are seldom considered. Here we show, using three popular whole-brain dynamical models, that different choices during fMRI preprocessing can dramatically affect model fits and interpretations of findings. Critically, we show that the ability of these models to accurately capture patterns in fMRI dynamics is mostly driven by the degree to which they fit global signals rather than interesting sources of coordinated neural dynamics. We show that widespread deflections can arise from simple global synchronisation. We introduce a simple two-parameter model that captures these fluctuations and performs just as well as more complex, multi-parameter biophysical models. From our combined analyses of data and simulations, we describe benchmarks to evaluate model fit and validity. Although most models are not resilient to denoising, we show that relaxing the approximation of homogeneous neural populations by more explicitly modelling inter-regional effective connectivity can improve model accuracy at the expense of increased model complexity. Our results suggest that many complex biophysical models may be fitting relatively trivial properties of the data, and underscore a need for tighter integration between data quality assurance and model development.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Confiabilidade dos Dados , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos
6.
J Theor Biol ; 535: 110978, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34952032

RESUMO

A physiologically based three-dimensional (3D) hemodynamic model is developed to predict the experimentally observed blood oxygen level dependent (BOLD) responses versus the cortical depth induced by visual stimuli. Prior 2D approximations are relaxed in order to analyze 3D blood flow dynamics as a function of cortical depth. Comparison of the predictions with experimental data for evoked stimuli demonstrates that the full 3D model performs at least as well as previous approaches while remaining parsimonious. In particular, the 3D model requires significantly fewer assumptions and model parameters than previous models such that there is no longer need to define depth-specific parameter values for spatial spreading, peak amplitude, and hemodynamic velocity.


Assuntos
Hemodinâmica , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética/métodos , Oxigênio
7.
J Neurosci ; 39(36): 7183-7194, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31341028

RESUMO

Directing attention helps to extract relevant information and suppress distracters. Alpha brain oscillations (8-12 Hz) are crucial for this process, with power decreases facilitating processing of important information and power increases inhibiting brain regions processing irrelevant information. Evidence for this phenomenon arises from visual attention studies (Worden et al., 2000); however, the effect also exists in other modalities, including the somatosensory system (Haegens et al., 2011) and intersensory attention tasks (Foxe and Snyder, 2011). We investigated in human participants (10 females, 10 males) the role of alpha oscillations in focused (0/100%) versus divided (40/60%) attention, both across modalities (visual/somatosensory; Experiment 1) and within the same modality (visual domain: across hemifields; Experiment 2) while recording EEG over 128 scalp electrodes. In Experiment 1, participants divided their attention between visual and somatosensory modality to determine the temporal/spatial frequency of a target stimulus (vibrotactile stimulus/Gabor grating). In Experiment 2, participants divided attention between two visual hemifields to identify the orientation of a Gabor grating. In both experiments, prestimulus alpha power in visual areas decreased linearly with increasing attention to visual stimuli. In contrast, prestimulus alpha power in parietal areas was lower when attention was divided between modalities/hemifields compared with focused attention. These results suggest there are two alpha sources, one of which reflects the "visual spotlight of attention" and the other reflects attentional effort. To our knowledge, this is the first study to show that attention recruits two spatially distinct alpha sources in occipital and parietal brain regions, acting simultaneously but serving different functions in attention.SIGNIFICANCE STATEMENT Attention to one spatial location/sensory modality leads to power changes of alpha oscillations (∼10 Hz) with decreased power over regions processing relevant information and power increases to actively inhibit areas processing "to-be-ignored" information. Here, we used detailed source modeling to investigate EEG data recorded during separate unimodal (visual) and multimodal (visual and somatosensory) attention tasks. Participants either focused their attention on one modality/spatial location or directed it to both. We show for the first time two distinct alpha sources are active simultaneously but play different roles. A sensory (visual) alpha source was linearly modulated by attention representing the "visual spotlight of attention." By contrast, a parietal alpha source was modulated by attentional effort, showing lowest alpha power when attention was divided.


Assuntos
Ritmo alfa , Atenção , Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Percepção do Tato , Percepção Visual
8.
Neuroimage ; 212: 116614, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084564

RESUMO

One of the most controversial procedures in the analysis of resting-state functional magnetic resonance imaging (rsfMRI) data is global signal regression (GSR): the removal, via linear regression, of the mean signal averaged over the entire brain. On one hand, the global mean signal contains variance associated with respiratory, scanner-, and motion-related artifacts, and its removal via GSR improves various quality-control metrics, enhances the anatomical specificity of functional-connectivity patterns, and can increase the behavioral variance explained by such patterns. On the other hand, GSR alters the distribution of regional signal correlations in the brain, can induce artifactual anticorrelations, may remove real neural signal, and can distort case-control comparisons of functional-connectivity measures. Global signal fluctuations can be identified visually from a matrix of colour-coded signal intensities, called a carpet plot, in which rows represent voxels and columns represent time. Prior to GSR, large, periodic bands of coherent signal changes that affect most of the brain are often apparent; after GSR, these apparently global changes are greatly diminished. Here, using three independent datasets, we show that reordering carpet plots to emphasize cluster structure in the data reveals a greater diversity of spatially widespread signal deflections (WSDs) than previously thought. Their precise form varies across time and participants, and GSR is only effective in removing specific kinds of WSDs. We present an alternative, iterative correction method called Diffuse Cluster Estimation and Regression (DiCER), that identifies representative signals associated with large clusters of coherent voxels. DiCER is more effective than GSR at removing diverse WSDs as visualized in carpet plots, reduces correlations between functional connectivity and head-motion estimates, reduces inter-individual variability in global correlation structure, and results in comparable or improved identification of canonical functional-connectivity networks. Using task fMRI data across 47 contrasts from 7 tasks in the Human Connectome Project, we also present evidence that DiCER is more successful than GSR in preserving the spatial structure of expected task-related activation patterns. Our findings indicate that care must be exercised when examining WSDs (and their possible removal) in rsfMRI data, and that DiCER is a viable alternative to GSR for removing anatomically widespread and temporally coherent signals. All code for implementing DiCER and replicating our results is available at https://github.com/BMHLab/DiCER.


Assuntos
Artefatos , Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos
9.
Cereb Cortex ; 29(6): 2668-2681, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897408

RESUMO

Event-related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain "activity". However, the precise nature of these effects remains unclear; in particular, whether such fluctuations reflect local dynamics, integration between regions, or both, is unknown. Here, using magnetoencephalography, we show that movement induced oscillatory modulation is associated with transient connectivity between sensorimotor regions. Further, in resting-state data, we demonstrate a significant association between oscillatory modulation and dynamic connectivity. A confound with such empirical measurements is that increased amplitude necessarily means increased signal-to-noise ratio (SNR): this means that the question of whether amplitude and connectivity are genuinely coupled, or whether increased connectivity is observed purely due to increased SNR is unanswered. Here, we counter this problem by analogy with computational models which show that, in the presence of global network coupling and local multistability, the link between oscillatory modulation and long-range connectivity is a natural consequence of neural networks. Our results provide evidence for the notion that connectivity is mediated by neural oscillations, and suggest that time-frequency spectrograms are not merely a description of local synchrony but also reflect fluctuations in long-range connectivity.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Magnetoencefalografia , Masculino , Desempenho Psicomotor/fisiologia
10.
Neuroimage ; 202: 116070, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31382045

RESUMO

Individual differences in impulsivity and compulsivity is thought to underlie vulnerability to a broad range of disorders and are closely tied to cortical-striatal-thalamic-cortical function. However, whether impulsivity and compulsivity in clinical disorders is continuous with the healthy population and explains cortical-striatal-thalamic-cortical dysfunction across different disorders remains unclear. Here, we characterized the relationship between cortical-striatal-thalamic-cortical effective connectivity, estimated using dynamic causal modelling of resting-state functional magnetic resonance imaging data, and dimensional phenotypes of impulsivity and compulsivity in two symptomatically distinct but phenotypically related disorders, obsessive-compulsive disorder and gambling disorder. 487 online participants provided data for modelling of dimensional phenotypes. These data were combined with 34 obsessive-compulsive disorder patients, 22 gambling disorder patients, and 39 healthy controls, who underwent functional magnetic resonance imaging. Three core dimensions were identified: disinhibition, impulsivity, and compulsivity. Patients' scores on these dimensions were continuously distributed with the healthy participants, supporting a continuum model of psychopathology. Across all participants, higher disinhibition correlated with lower bottom-up connectivity in the dorsal circuit and greater bottom-up connectivity in the ventral circuit, and higher compulsivity correlated with lower bottom-up connectivity in the dorsal circuit. In patients, higher clinical severity was also linked to lower bottom-up connectivity in the dorsal circuit, but these findings were independent of phenotypic variation, demonstrating convergence towards behaviourally and clinically relevant changes in brain dynamics. Effective connectivity did not differ as a function of traditional diagnostic labels and only weak associations were observed for functional connectivity measures. Together, our results demonstrate that cortical-striatal-thalamic-cortical dysfunction across obsessive-compulsive disorder and gambling disorder may be better characterized by dimensional phenotypes than diagnostic comparisons, supporting investigation of quantitative liability phenotypes.


Assuntos
Encéfalo/fisiopatologia , Jogo de Azar/fisiopatologia , Vias Neurais/fisiopatologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Comportamento Impulsivo/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
11.
Hum Brain Mapp ; 40(4): 1298-1316, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430706

RESUMO

Functional MRI at ultra-high field (UHF, ≥7 T) provides significant increases in BOLD contrast-to-noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for reduced field-of-view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher-order cognitive tasks leads to a number of challenges, in particular how to perform robust group-level statistical analyses. This study addresses these challenges using an inter-sensory cognitive task which modulates top-down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalisation and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal-lateral-prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second-level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multivariate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Adulto Jovem
12.
Neuroimage ; 139: 240-248, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27321045

RESUMO

The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millimeter, promising the non-invasive measurement of these properties in awake and behaving humans (Muckli et al., 2015; Olman et al., 2012; Ress et al., 2007). To advance this endeavor, we present a detailed spatiotemporal hemodynamic response function (HRF) reconstructed through the use of high-resolution, submillimeter fMRI. We decomposed the HRF into directions tangential and perpendicular to the cortical surface and found that key spatial properties of the HRF change significantly with depth from the cortical surface. Notably, we found that the spatial spread of the HRF increases linearly from 4.8mm at the gray/white matter boundary to 6.6mm near the cortical surface. Using a hemodynamic model, we posit that this effect can be explained by the depth profile of the cortical vasculature, and as such, must be taken into account to properly estimate the underlying neuronal responses at different cortical depths.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Acoplamento Neurovascular , Processamento de Sinais Assistido por Computador , Adulto Jovem
13.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915560

RESUMO

The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.

14.
Brain Commun ; 6(1): fcae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347944

RESUMO

Psychosis has often been linked to abnormal cortical asymmetry, but prior results have been inconsistent. Here, we applied a novel spectral shape analysis to characterize cortical shape asymmetries in patients with early psychosis across different spatial scales. We used the Human Connectome Project for Early Psychosis dataset (aged 16-35), comprising 56 healthy controls (37 males, 19 females) and 112 patients with early psychosis (68 males, 44 females). We quantified shape variations of each hemisphere over different spatial frequencies and applied a general linear model to compare differences between healthy controls and patients with early psychosis. We further used canonical correlation analysis to examine associations between shape asymmetries and clinical symptoms. Cortical shape asymmetries, spanning wavelengths from about 22 to 75 mm, were significantly different between healthy controls and patients with early psychosis (Cohen's d = 0.28-0.51), with patients showing greater asymmetry in cortical shape than controls. A single canonical mode linked the asymmetry measures to symptoms (canonical correlation analysis r = 0.45), such that higher cortical asymmetry was correlated with more severe excitement symptoms and less severe emotional distress. Significant group differences in the asymmetries of traditional morphological measures of cortical thickness, surface area, and gyrification, at either global or regional levels, were not identified. Cortical shape asymmetries are more sensitive than other morphological asymmetries in capturing abnormalities in patients with early psychosis. These abnormalities are expressed at coarse spatial scales and are correlated with specific symptom domains.

15.
PLoS Comput Biol ; 8(3): e1002435, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457612

RESUMO

Functional MRI (fMRI) experiments rely on precise characterization of the blood oxygen level dependent (BOLD) signal. As the spatial resolution of fMRI reaches the sub-millimeter range, the need for quantitative modelling of spatiotemporal properties of this hemodynamic signal has become pressing. Here, we find that a detailed physiologically-based model of spatiotemporal BOLD responses predicts traveling waves with velocities and spatial ranges in empirically observable ranges. Two measurable parameters, related to physiology, characterize these waves: wave velocity and damping rate. To test these predictions, high-resolution fMRI data are acquired from subjects viewing discrete visual stimuli. Predictions and experiment show strong agreement, in particular confirming BOLD waves propagating for at least 5-10 mm across the cortical surface at speeds of 2-12 mm s-1. These observations enable fundamentally new approaches to fMRI analysis, crucial for fMRI data acquired at high spatial resolution.


Assuntos
Relógios Biológicos/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Modelos Neurológicos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Humanos
16.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909539

RESUMO

Voxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings. Moreover, they are restricted to a single spatial resolution scale, precluding the opportunity to distinguish anatomical variations that are expressed across multiple scales. Drawing on concepts from classical physics, here we develop an approach, called mode-based morphometry (MBM), that can describe any empirical map of anatomical variations in terms of the fundamental, resonant modes--eigenmodes--of brain anatomy, each tied to a specific spatial scale. Hence, MBM naturally yields a multiscale characterization of the empirical map, affording new opportunities for investigating the spatial frequency content of neuroanatomical variability. Using simulated and empirical data, we show that the validity and reliability of MBM are either comparable or superior to classical vertex-based SBM for capturing differences in cortical thickness maps between two experimental groups. Our approach thus offers a robust, accurate, and informative method for characterizing empirical maps of neuroanatomical variability that can be directly linked to a generative physical process.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37683727

RESUMO

BACKGROUND: The cerebral cortex is organized hierarchically along an axis that spans unimodal sensorimotor to transmodal association areas. This hierarchy is often characterized using low-dimensional embeddings, termed gradients, of interregional functional coupling estimates measured with resting-state functional magnetic resonance imaging. Such analyses may offer insights into the pathophysiology of schizophrenia, which has been frequently linked to dysfunctional interactions between association and sensorimotor areas. METHODS: To examine disruptions of hierarchical cortical function across distinct stages of psychosis, we applied diffusion map embedding to 2 independent functional magnetic resonance imaging datasets: one comprising 114 patients with early psychosis and 48 control participants, and the other comprising 50 patients with established schizophrenia and 121 control participants. Then, we analyzed the primary sensorimotor-to-association and secondary visual-to-sensorimotor gradients of each participant in both datasets. RESULTS: There were no significant differences in regional gradient scores between patients with early psychosis and control participants. Patients with established schizophrenia showed significant differences in the secondary, but not primary, gradient compared with control participants. Gradient differences in schizophrenia were characterized by lower within-network dispersion in the dorsal attention (false discovery rate [FDR]-corrected p [pFDR] < .001), visual (pFDR = .003), frontoparietal (pFDR = .018), and limbic (pFDR = .020) networks and lower between-network dispersion between the visual network and other networks (pFDR < .001). CONCLUSIONS: These findings indicate that differences in cortical hierarchical function occur along the secondary visual-to-sensorimotor axis rather than the primary sensorimotor-to-association axis as previously thought. The absence of differences in early psychosis suggests that visual-sensorimotor abnormalities may emerge as the illness progresses.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Córtex Sensório-Motor , Humanos , Imageamento por Ressonância Magnética/métodos
18.
Nat Neurosci ; 26(9): 1613-1629, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580620

RESUMO

The substantial individual heterogeneity that characterizes people with mental illness is often ignored by classical case-control research, which relies on group mean comparisons. Here we present a comprehensive, multiscale characterization of the heterogeneity of gray matter volume (GMV) differences in 1,294 cases diagnosed with one of six conditions (attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, depression, obsessive-compulsive disorder and schizophrenia) and 1,465 matched controls. Normative models indicated that person-specific deviations from population expectations for regional GMV were highly heterogeneous, affecting the same area in <7% of people with the same diagnosis. However, these deviations were embedded within common functional circuits and networks in up to 56% of cases. The salience-ventral attention system was implicated transdiagnostically, with other systems selectively involved in depression, bipolar disorder, schizophrenia and attention-deficit/hyperactivity disorder. Phenotypic differences between cases assigned the same diagnosis may thus arise from the heterogeneous localization of specific regional deviations, whereas phenotypic similarities may be attributable to the dysfunction of common functional circuits and networks.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética , Substância Cinzenta , Encéfalo
19.
JAMA Psychiatry ; 80(12): 1246-1257, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728918

RESUMO

Importance: Psychotic illness is associated with anatomically distributed gray matter reductions that can worsen with illness progression, but the mechanisms underlying the specific spatial patterning of these changes is unknown. Objective: To test the hypothesis that brain network architecture constrains cross-sectional and longitudinal gray matter alterations across different stages of psychotic illness and to identify whether certain brain regions act as putative epicenters from which volume loss spreads. Design, Settings, and Participants: This case-control study included 534 individuals from 4 cohorts, spanning early and late stages of psychotic illness. Early-stage cohorts included patients with antipsychotic-naive first-episode psychosis (n = 59) and a group of patients receiving medications within 3 years of psychosis onset (n = 121). Late-stage cohorts comprised 2 independent samples of people with established schizophrenia (n = 136). Each patient group had a corresponding matched control group (n = 218). A sample of healthy adults (n = 356) was used to derive representative structural and functional brain networks for modeling of network-based spreading processes. Longitudinal illness-related and antipsychotic-related gray matter changes over 3 and 12 months were examined using a triple-blind randomized placebo-control magnetic resonance imaging study of the antipsychotic-naive patients. All data were collected between April 29, 2008, and January 15, 2020, and analyses were performed between March 1, 2021, and January 14, 2023. Main Outcomes and Measures: Coordinated deformation models were used to estimate the extent of gray matter volume (GMV) change in each of 332 parcellated areas by the volume changes observed in areas to which they were structurally or functionally coupled. To identify putative epicenters of volume loss, a network diffusion model was used to simulate the spread of pathology from different seed regions. Correlations between estimated and empirical spatial patterns of GMV alterations were used to quantify model performance. Results: Of 534 included individuals, 354 (66.3%) were men, and the mean (SD) age was 28.4 (7.4) years. In both early and late stages of illness, spatial patterns of cross-sectional volume differences between patients and controls were more accurately estimated by coordinated deformation models constrained by structural, rather than functional, network architecture (r range, >0.46 to <0.57; P < .01). The same model also robustly estimated longitudinal volume changes related to illness (r ≥ 0.52; P < .001) and antipsychotic exposure (r ≥ 0.50; P < .004). Network diffusion modeling consistently identified, across all 4 data sets, the anterior hippocampus as a putative epicenter of pathological spread in psychosis. Epicenters of longitudinal GMV loss were apparent in posterior cortex early in the illness and shifted to the prefrontal cortex with illness progression. Conclusion and Relevance: These findings highlight a central role for white matter fibers as conduits for the spread of pathology across different stages of psychotic illness, mirroring findings reported in neurodegenerative conditions. The structural connectome thus represents a fundamental constraint on brain changes in psychosis, regardless of whether these changes are caused by illness or medication. Moreover, the anterior hippocampus represents a putative epicenter of early brain pathology from which dysfunction may spread to affect connected areas.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Masculino , Adulto , Humanos , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Antipsicóticos/uso terapêutico , Estudos Transversais , Estudos de Casos e Controles , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
20.
Front Comput Neurosci ; 16: 847336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547660

RESUMO

New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA