Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Cardiovasc Pharmacol ; 84(1): 101-109, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573589

RESUMO

ABSTRACT: Myocardial infarction (MI) and pulmonary arterial hypertension (PAH) are 2 prevalent cardiovascular diseases. In both conditions, oxidative stress is associated with a worse prognosis. Pterostilbene (PTE), an antioxidant compound, has been studied as a possible therapy for cardiovascular diseases. This study aims to evaluate the effect of PTE on oxidative stress in the hearts of animals with MI and in the lungs of animals with PAH. Male Wistar rats were used in both models. In the MI model, the experimental groups were sham, MI, and MI + PTE. In the PAH model, the experimental groups were control, PAH, and PAH + PTE. Animals were exposed to MI through surgical ligation of the left coronary artery, or to PAH, by the administration of monocrotaline (60 mg/kg). Seven days after undergoing cardiac injury, the MI + PTE animals were treated with PTE (100 mg/kg day) for 8 days. After this, the heart was collected for molecular analysis. The PAH + PTE animals were treated with PTE (100 mg/kg day) for 14 days, beginning 7 days after PAH induction. After this, the lungs were collected for biochemical evaluation. We found that PTE administration attenuated the decrease in ejection fraction and improved left ventricle end-systolic volume in infarcted animals. In the PAH model, PTE improved pulmonary artery flow and decreased reactive oxygen species levels in the lung. PTE administration promoted protective effects in terms of oxidative stress in 2 experimental models of cardiac diseases: MI and PAH. PTE also improved cardiac function in infarcted rats and pulmonary artery flow in animals with PAH.


Assuntos
Antioxidantes , Modelos Animais de Doenças , Pulmão , Infarto do Miocárdio , Miocárdio , Estresse Oxidativo , Hipertensão Arterial Pulmonar , Ratos Wistar , Estilbenos , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiopatologia , Estilbenos/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Antioxidantes/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Pressão Arterial/efeitos dos fármacos , Monocrotalina
2.
Can J Physiol Pharmacol ; 101(2): 106-116, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661235

RESUMO

Inflammatory pathways of Toll-like receptor 4 (TLR4) and NLRP3 inflammasome contribute to acute myocardial infarction (AMI) pathophysiology. The hypoxia-inducible factor 1α (HIF-1α), however, is a key transcription factor related to cardioprotection. This study aimed to compare the influence of carvedilol and thyroid hormones (TH) on inflammatory and HIF-1α proteins and on cardiac haemodynamics in the infarcted heart. Male Wistar rats were allocated into five groups: sham-operated group (SHAM), infarcted group (MI), infarcted treated with the carvedilol group (MI + C), infarcted treated with the TH group (MI + TH), and infarcted co-treated with the carvedilol and TH group (MI + C + TH). Haemodynamic analysis was assessed 15 days post-AMI. The left ventricle (LV) was collected for morphometric and Western blot analysis. The MI group presented LV systolic pressure reduction, LV end-diastolic pressure elevation, and contractility index decrease compared to the SHAM group. The MI + C, MI + TH, and MI + C + TH groups did not reveal such alterations compared to the SHAM group. The MI + TH and MI + C + TH groups presented reduced MyD88 and NLRP3 and increased HIF-1α levels. In conclusion, all treatments preserve the cardiac haemodynamic, and only TH, as isolated treatment or in co-treatment with carvedilol, was able to reduce MyD88 and NLRP3 and increase HIF-1α in the infarcted heart.


Assuntos
Fator 88 de Diferenciação Mieloide , Infarto do Miocárdio , Animais , Masculino , Ratos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Wistar , Hormônios Tireóideos
3.
Can J Physiol Pharmacol ; 101(9): 447-454, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581356

RESUMO

Oxidative stress is involved in increased pulmonary vascular resistance (PVR) and right ventricular (RV) hypertrophy, characteristics of pulmonary arterial hypertension (PAH). Copaiba oil, an antioxidant compound, could attenuate PAH damage. This study's aim was to determine the effects of copaiba oil on lung oxidative stress, PVR, and mean pulmonary arterial pressure (mPAP) in the monocrotaline (MCT) model of PAH. Male Wistar rats (170 g, n = 7/group) were divided into four groups: control, MCT, copaiba oil, and MCT + copaiba oil (MCT-O). PAH was induced by MCT (60 mg/kg i.p.) and, after 1 week, the treatment with copaiba oil (400 mg/kg/day gavage) was started for 14 days. Echocardiographic and hemodynamic measurements were performed. RV was collected for morphometric evaluations and lungs and the pulmonary artery were used for biochemical analysis. Copaiba oil significantly reduced RV hypertrophy, PVR, mPAP, and antioxidant enzyme activities in the MCT-O group. Moreover, increased nitric oxide synthase and decreased NADPH oxidase activities were observed in the MCT-O group. In conclusion, copaiba oil was able to improve the balance between nitric oxide and reactive oxygen species in lungs and the pulmonary artery and to reduce PVR, which could explain a decrease in RV hypertrophy in this PAH model.


Assuntos
Hipertensão Pulmonar , Óleos Voláteis , Hipertensão Arterial Pulmonar , Ratos , Masculino , Animais , Ratos Wistar , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/efeitos adversos , Óxido Nítrico , Antioxidantes/farmacologia , Disponibilidade Biológica , Pulmão , Artéria Pulmonar , Hipertensão Pulmonar Primária Familiar , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/tratamento farmacológico , Óleos Voláteis/farmacologia , Modelos Animais de Doenças
4.
Mol Cell Biochem ; 477(3): 663-672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988854

RESUMO

Enhanced sympathetic system activation mediated by norepinephrine (NE) contributes to adverse cardiac remodeling leading to oxidative stress and cell death, progressing to heart failure. Natural antioxidants may help maintain redox balance, attenuating NE-mediated cardiac cell damage. In the present study, we evaluated the effect of a blueberry extract (BBE) on H9c2 cardiac cells exposed to NE on cell death, oxidative stress status and its major signaling pathways. H9c2 cells were pre-incubated with 50 µg/ml of BBE for 4 h and maintained in the presence of 100 µM NE for 24 h. NE exposure resulted in increased caspase 3/7 activity. This was associated with reduced protein expression of antioxidants catalase, superoxide dismutase and glutathione peroxidase and increase in 4-hydroxynonenal adduct formation. NE led to increased activity of Protein kinase B (Akt), Forkhead box O3a and AMP-activated protein kinase alpha and decreased activity of Signal transducer and activator of transcription 3. BBE prevented caspases activation and abrogated NE-induced increase in oxidative stress, as well as attenuated the increase in Akt. Based on these findings, it is concluded that BBE promoted cardioprotection of H9c2 cells in an in vitro model of NE-induced oxidative damage, suggesting a cardioprotective role for BBE in response to NE exposure.


Assuntos
Apoptose/efeitos dos fármacos , Mirtilos Azuis (Planta)/química , Mioblastos Cardíacos/metabolismo , Norepinefrina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Extratos Vegetais/química , Ratos
5.
Eur J Nutr ; 61(1): 373-386, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34374852

RESUMO

PURPOSE: Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right ventricle (RV) failure. In this context, oxidative stress is an essential element contributing to PAH's pathophysiology. Thus, blueberry (BB), which has a high antioxidant capacity, emerges as a natural therapeutic approach in PAH. This work evaluated the effect of BB extract on redox balance in RV in a PAH's animal model. METHODS: Male Wistar rats (200 ± 20 g) (n = 72) were randomized into eight groups: control (CTR); monocrotaline (MCT); CTR and MCT treated at doses of 50, 100, and 200 mg/kg BB. PAH was induced by administration of MCT (60 mg/kg, intraperitoneal). Rats were treated with BB orally for 5 weeks (2 weeks before monocrotaline and 3 weeks after monocrotaline injection). On day 35, rats were submitted to echocardiography and catheterization, then euthanasia and RV harvesting for biochemical analyses. RESULTS: RV hypertrophy, observed in the MCT groups, was reduced with BB treatment. MCT elevated RV systolic pressure and pressure/time derivatives, while the intervention with BB decreased these parameters. PAH decreased RV output and pulmonary artery outflow acceleration/ejection time ratio, while increased RV diameters, parameters restored by BB treatment. Animals from the MCT group showed elevated lipid peroxidation and NADPH oxidase activity, outcomes attenuated in animals treated with BB, which also led to increased catalase activity. CONCLUSION: Treatment with BB partially mitigated PAH, which could be associated with improvement of RV redox state. Such findings constitute an advance in the investigation of the role of BB extract in chronic progressive cardiovascular diseases that involve the redox balance, such as PAH.


Assuntos
Mirtilos Azuis (Planta) , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Modelos Animais de Doenças , Ventrículos do Coração , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Oxirredução , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
6.
An Acad Bras Cienc ; 93(suppl 4): e20210297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706009

RESUMO

Acute myocardial infarction (AMI) is one of the major causes of heart failure and mortality. Glucocorticoids administration post-infarction has long been proposed, but it has shown conflicting results so far. This controversy may be associated with the glucocorticoid type and the period when it is administered. To elucidate these, the present aims to evaluate if the brief methylprednisolone acetate administration is determinant for heart adaptation after AMI. Male Wistar rats were divided into 3 groups: sham-operated (SHAM); infarcted (AMI); infarcted treated with methylprednisolone acetate (AMI+M). Immediately after surgery, the AMI+M group received a single dose of methylprednisolone acetate (40 mg/kg i.m.). After 56 days, the cardiac function was assessed and lungs, liver and heart were collected to determine rates of hypertrophy and congestion. Heart was used for oxidative stress and metalloproteinase activity analyses. Methylprednisolone acetate attenuated matrix metalloproteinase-2 activity, cardiac dilatation, and prevented the onset of pulmonary congestion, as well as avoided cardiac hypertrophy. Our data indicate that administration of methylprednisolone acetate shortly after AMI may be a therapeutic alternative for attenuation of detrimental ventricular remodeling.


Assuntos
Metilprednisolona , Infarto do Miocárdio , Animais , Masculino , Metaloproteinase 2 da Matriz , Metilprednisolona/uso terapêutico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Ratos , Ratos Wistar , Remodelação Ventricular
7.
Exp Physiol ; 105(9): 1561-1570, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32667095

RESUMO

NEW FINDINGS: What is the central question of this study? Does thyroid hormone treatment given after myocardial infarction preserve left ventricular function and treadmill exercise performance, and improve parameters of oxidative stress in the right ventricle and lungs of Wistar rats? What is the main finding and its importance? Thyroid hormone treatment improved the performance of the maximum exercise test in infarcted rats and induced effects in the heart and lungs that were similar to those observed with exercise training. This suggests there is a significant value of thyroid hormones for preserving exercise tolerance after myocardial infarction. ABSTRACT: Left ventricular myocardial infarction (MI) provokes damage in the heart and in other tissues, such as right ventricle and lungs. The present study elucidated whether thyroid hormone treatment (THT) may present positive effects in heart and lungs after MI, and whether or not these effects are similar to those of exercise training (ET). Male Wistar rats were divided into four groups: sham operated (SHAM), infarcted (MI), infarcted + exercise training (MIE), and infarcted + thyroid hormones (MIH). A maximum exercise test, left ventricle echocardiography, pulmonary histology, and oxidative stress in the right ventricle and lung were evaluated. THT and ET both reduced left ventricular dilatation and end-diastolic wall stress indexes to a similar extent. MI accentuated the content of macrophages and inflammatory infiltrate in the lungs, which was partially prevented in the MIH and MIE groups. THT and ET presented similar effects in the heart and lungs, and both improved the performance of the maximum exercise test in infarcted animals.


Assuntos
Teste de Esforço , Infarto do Miocárdio/terapia , Condicionamento Físico Animal , Hormônios Tireóideos/farmacologia , Função Ventricular Esquerda , Animais , Ecocardiografia , Coração , Pulmão , Masculino , Miocárdio , Estresse Oxidativo , Ratos Wistar
8.
J Cardiovasc Pharmacol ; 76(6): 698-707, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33105324

RESUMO

Cellular death and survival signaling plays a key role in the progress of adverse cardiac remodeling after acute myocardial infarction (AMI). Therapeutic strategies, such as co-treatment with beta-blocker carvedilol and thyroid hormones (THs), give rise to new approaches that can sustain the cellular homeostasis after AMI. Therefore, we sought to investigate the effects of carvedilol and TH co-administration on apoptosis and survival proteins and on cardiac remodeling after AMI. Male Wistar rats were distributed in 5 groups as follows: sham-operated group (SHAM), infarcted group (MI), infarcted plus carvedilol group (MI+C), infarcted plus TH group (MI+TH), and infarcted plus carvedilol and TH co-treatment group (MI+C+TH). Echocardiographic analysis was performed, and hearts were collected for western blot evaluation. The MI group presented systolic posterior wall thickness loss, an increase in the wall tension index, and an increase in atrial natriuretic peptide tissue levels than the SHAM group. However, in the MI+C+TH group, these parameters were equally to the SHAM group. Moreover, whereas the MI group showed Bax protein expression elevated in relation to the SHAM group, the MI+C+TH group presented Bax reduction and also Akt activation compared with the MI group. In addition, the MI+TH group revealed beta-1 adrenergic receptor (ß1AR) upregulation compared with the MI and MI+C groups, whereas the MI+C+TH group presented lower levels of ß1AR in relation to the SHAM and MI+TH groups. In conclusion, we suggest that carvedilol and TH co-administration may mediate its cardioprotective effects against adverse cardiac remodeling post-AMI through the Bax reduction, Akt activation, and ß1AR decrease.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Carvedilol/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais
9.
Neurochem Res ; 43(2): 458-464, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29196951

RESUMO

Alcohol hangover refers to unpleasant symptoms experienced as a direct consequence of a binge drinking episode. The effects observed in this condition are related to the increase in alcohol metabolites and imbalance in oxidative status. N-acetylcysteine (NAC) is a mucolytic agent and an antidote for paracetamol overdose. Preclinical and clinical studies have shown that NAC is a multi-target drug acting through neuroprotective, antioxidant and neurotrophic mechanisms as well as a glutamate modulator. The aim of this study was to investigate the effects of NAC in zebrafish acutely exposed to ethanol (EtOH). Animals pretreated or not with NAC (1 mg/L, 10 min) were exposed for 60 min to standard tank water (EtOH-) or to 1% EtOH (EtOH+) to evaluate anxiety-like behavior and locomotion in the novel tank test and oxidative damage in the brain. Zebrafish (Danio rerio) exposed to EtOH displayed a decrease in the distance traveled, crossings, entries and time spent in the top area in the novel tank test. Exposure to EtOH also caused oxidative damage, shown by increased lipid peroxidation, decreased non-protein thiols and increased production of reactive oxygen species (DCF assay). NAC prevented both the behavioral alterations and the oxidative stress observed in EtOH+ animals. Given the effects of NAC in preventing the acute behavioral and biochemical effects of EtOH, additional studies are warranted to further investigate the basis of its anecdotal use to prevent hangover.


Assuntos
Acetilcisteína/farmacologia , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Etanol/administração & dosagem , Feminino , Masculino , Peixe-Zebra
10.
Mol Cell Biochem ; 440(1-2): 115-125, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28819811

RESUMO

Our aim was to investigate transitory and delayed exercise effects on serum extracellular vesicles (EVs) in aging process. Male Wistar rats of 3-, 21-, and 26-month old were allocated into exercised and sedentary groups. The exercise protocol consisted in a daily moderate treadmill exercise (20 min daily during 2 weeks). Trunk blood was collected 1 and 18 h after the last exercise session, and circulating EVs were obtained. CD63 levels and acetylcholinesterase (AChE) activity were used as markers of exosome, a subtype of EVs. In addition, the quantification of amyloid-ß (Aß) levels and the oxidative status parameters, specifically reactive species content, superoxide dismutase (SOD) activity, and SOD1 content were evaluated. Aged rats showed reduced CD63 levels and increased AChE activity in circulating exosomes compared to young ones. Moreover, higher reactive species levels were found in circulating EVs of aged rats. Delayed exercise effects were observed on peripheral EVs, since CD63, reactive species content, and AChE activity were altered 18 h after the last exercise session. Our results suggest that the healthy aging process can modify circulating EVs profile, and exercise-induced beneficial effects may be related to its modulation on EVs.


Assuntos
Envelhecimento/sangue , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Condicionamento Físico Animal , Acetilcolinesterase/sangue , Peptídeos beta-Amiloides/sangue , Animais , Proteínas Ligadas por GPI/sangue , Masculino , Ratos , Ratos Wistar , Tetraspanina 30/sangue
11.
J Cardiovasc Pharmacol ; 72(5): 214-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30212415

RESUMO

There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fabaceae , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Monocrotalina , Miocárdio , Óleos de Plantas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fabaceae/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Proteína X Associada a bcl-2/metabolismo
12.
Can J Physiol Pharmacol ; 96(3): 295-303, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28854338

RESUMO

The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg-1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor ß (ER-ß). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.


Assuntos
Antioxidantes/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Monocrotalina/efeitos adversos , Ovariectomia/efeitos adversos , Adaptação Fisiológica/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Remodelação Ventricular/efeitos dos fármacos
13.
Metab Brain Dis ; 33(1): 333-342, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29260360

RESUMO

Several studies have examined neonatal diabetes, a rare disease characterized by hyperglycemia and low insulin levels that is usually diagnosed in the first 6 month of life. Recently, the effects of diabetes on the brain have received considerable attention. In addition, hyperglycemia may perturb brain function and might be associated with neuronal death in adult rats. However, few studies have investigated the damaging effects of neonatal hyperglycemia on the rat brain during central nervous system (CNS) development, particularly the mechanisms involved in the disease. Thus, in the present work, we investigated whether neonatal hyperglycemia induced by streptozotocin (STZ) promoted cell death and altered the levels of proteins involved in survival/death pathways in the rat brain. Cell death was assessed using FluoroJade C (FJC) staining and the expression of the p38 mitogen-activated protein kinase (p38), phosphorylated-c-Jun amino-terminal kinase (p-JNK), c-Jun amino-terminal kinase (JNK), protein kinase B (Akt), phosphorylated-protein kinase B (p-Akt), glycogen synthase kinase-3ß (Gsk3ß), B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) protein were measured by Western blotting. The main results of this study showed that the metabolic alterations observed in diabetic rats (hyperglycemia and hypoinsulinemia) increased p38 expression and decreased p-Akt expression, suggesting that cell survival was altered and cell death was induced, which was confirmed by FJC staining. Therefore, the metabolic conditions observed during neonatal hyperglycemia may contribute to the harmful effect of diabetes on the CNS in a crucial phase of postnatal neuronal development.


Assuntos
Encéfalo/patologia , Morte Celular/fisiologia , Hiperglicemia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Encéfalo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Neurônios/metabolismo , Fosforilação , Ratos Wistar , Proteína X Associada a bcl-2/metabolismo
14.
Mol Cell Biochem ; 432(1-2): 33-39, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28321539

RESUMO

Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.


Assuntos
Butileno Glicóis/farmacologia , Cardiomegalia/tratamento farmacológico , Glucosídeos/farmacologia , Monocrotalina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Masculino , Ratos , Ratos Wistar , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
15.
J Cardiovasc Pharmacol ; 69(2): 79-85, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27798416

RESUMO

Copaiba oil comes from an Amazonian tree and has been used as an alternative medicine in Brazil. However, it has not been investigated yet in the treatment of cardiovascular diseases. This study was designed to test whether copaiba oil or nanocapsules containing this oil could modulate monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male Wistar rats (170 ± 20 g) received oil or nanocapsules containing this oil (400 mg/kg) by gavage daily for 1 week. At the end of this period, a single injection of MCT (60 mg/kg i.p.) was administered and measurements were performed after 3 weeks. The animals were divided into 6 groups: control, copaiba oil, nanocapsules with copaiba oil, MCT, oil + MCT, and nanocapsules + MCT. Afterward, echocardiographic assessments were performed, and rats were killed to collect hearts for morphometry and oxidative stress. MCT promoted a significant increase in pulmonary vascular resistance, right ventricle (RV) hypertrophy, and RV oxidative stress. Both oil and copaiba nanocapsules significantly reduced RV hypertrophy and oxidative stress. Pulmonary vascular resistance was reduced by copaiba oil in natura but not by nanocapsules. In conclusion, copaiba oil seems to offer protection against MCT-induced PAH. Our preliminary results suggest that copaiba oil may be an important adjuvant treatment for PAH.


Assuntos
Fabaceae , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/toxicidade , Nanocápsulas/administração & dosagem , Óleos de Plantas/administração & dosagem , Animais , Hipertensão Pulmonar/metabolismo , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
16.
Apoptosis ; 21(2): 184-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26659365

RESUMO

Apoptosis is a key process associated with pathological cardiac remodelling in early-phase post-myocardial infarction. In this context, several studies have demonstrated an anti-apoptotic effect of thyroid hormones (TH). The aim of this study was to evaluate the effects of TH on the expression of proteins associated with the apoptotic process 14 days after infarction. Male Wistar rats (300-350 g) (n = 8/group) were divided into four groups: Sham-operated (SHAM), infarcted (AMI), sham-operated + TH (SHAMT) and infarcted + TH (AMIT). For 12 days, the animals received T3 and T4 [2 and 8 µg/(100 g day)] by gavage. After this, the rats were submitted to haemodynamic and echocardiographic analysis, and then were sacrificed and the heart tissue was collected for molecular analysis. Statistical analyses included two-way ANOVA with Student-Newman-Keuls post test. Ethics Committee number: 23262. TH administration prevented the loss of ventricular wall thickness and improved cardiac function in the infarcted rats 14 days after the injury. AMI rats presented an increase in the pro-apoptotic proteins p53 and JNK. The hormonal treatment prevented this increase in AMIT rats. In addition, TH administration decreased the Bax:Bcl-2 ratio in the infarcted rats. TH administration improved cardiac functional parameters, and decreased the expression of pro-apoptotic proteins 14 days after myocardial infarction.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cardiotônicos/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Tiroxina/administração & dosagem , Tri-Iodotironina/administração & dosagem , Animais , Proteínas Reguladoras de Apoptose/genética , Cardiotônicos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Peroxidação de Lipídeos , Masculino , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Oxirredução , Estresse Oxidativo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiroxina/farmacocinética , Tri-Iodotironina/farmacocinética , Pressão Ventricular/efeitos dos fármacos
17.
Pain Med ; 17(1): 122-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26408420

RESUMO

OBJECTIVE: The aim was to assess the neuromodulation techniques effects (repetitive transcranial magnetic stimulation [rTMS] and deep intramuscular stimulation therapy [DIMST]) on pain intensity, peripheral, and neurophysiological biomarkers chronic myofascial pain syndrome (MPS) patients. DESIGN: Randomized, double blind, factorial design, and controlled placebo-sham clinical trial. SETTING: Clinical trial in the Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (NCT02381171). SUBJECTS: We recruited women aged between 19- and 75-year old, with MPS diagnosis. METHODS: Patients were randomized into four groups: rTMS + DIMST, rTMS + sham-DIMST, sham-rTMS + DIMST, sham-rTMS + sham-DIMST; and received 10 sessions for 20 minutes each one (rTMS and DIMST). Pain was assessed by visual analogue scale (VAS); neurophysiological parameters were assessed by transcranial magnetic stimulation; biochemical parameters were: BDNF, S100ß, lactate dehydrogenase, inflammatory (TNF-α, IL6, and IL10), and oxidative stress parameters. RESULTS: We observed the pain relief assessed by VAS immediately assessed before and after the intervention (P < 0.05, F(1,3)= 3.494 and F(1,3)= 4.656, respectively); in the sham-rTMS + DIMST group and both three active groups in relation to sham-rTMS + sham-DIMST group, respectively. There was an increase in the MEP after rTMS + sham-DIMST (P < 0.05). However, there was no change in all-peripheral parameters analyzed across the treatment (P > 0.05). CONCLUSION: Our findings add additional evidence about rTMS and DIMST in relieving pain in MPS patients without synergistic effect. No peripheral biomarkers reflected the analgesic effect of both techniques; including those related to cellular damage. Additionally, one neurophysiological parameter (increased MEP amplitude) needs to be investigated.


Assuntos
Síndromes da Dor Miofascial/terapia , Estimulação Magnética Transcraniana , Adulto , Idoso , Analgésicos/uso terapêutico , Biomarcadores/análise , Método Duplo-Cego , Feminino , Humanos , Pessoa de Meia-Idade , Manejo da Dor/métodos , Estimulação Magnética Transcraniana/métodos , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
18.
Can J Physiol Pharmacol ; 94(5): 508-16, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26900720

RESUMO

Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg(-1)·day(-1)) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.


Assuntos
Antioxidantes/uso terapêutico , Coração/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Cardiotônicos/uso terapêutico , Coração/fisiopatologia , Heme Oxigenase-1/química , Heme Oxigenase-1/metabolismo , Técnicas In Vitro , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/enzimologia , Miocárdio/imunologia , NF-kappa B , Perfusão , Distribuição Aleatória , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/metabolismo
19.
Mol Cell Biochem ; 408(1-2): 235-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26160278

RESUMO

UNLABELLED: Myocardial infarction leads to a reduction in nitric oxide (NO) bioavailability and an increase in reactive oxygen species (ROS) levels. This scenario has been shown to be detrimental to the heart. Recent studies have shown that thyroid hormone (TH) administration presents positive effects after ischaemic injury. Based on this, the aim of this study was to evaluate the effect of TH on NO bioavailability as well as on endothelial nitric oxide synthase (eNOS) expression after myocardial infarction. Male Wistar rats were divided into three groups: Sham-operated (SHAM), infarcted (AMI) and infarcted + TH (AMIT). During 26 days, the AMIT group received T3 and T4 (2 and 8 µg/100 g/day, respectively) by gavage, while SHAM and AMI rats received saline. After this, the rats underwent echocardiographic analysis were sacrificed, and the left ventricle was collected for biochemical and molecular analysis. STATISTICAL ANALYSIS: one-way ANOVA with Student-Newman-Keuls post test. AMI rats presented a 38% increase in ROS levels. TH administration prevented these alterations in AMIT rats. The AMIT group presented an increase in eNOS expression, in NOS activity and in nitrite levels. TH administration also increased PGC-1α expression in the AMIT group. In conclusion, TH effects seem to involve a modulation of eNOS expression and an improvement in NO bioavailability in the infarcted heart.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Tiroxina/administração & dosagem , Tri-Iodotironina/administração & dosagem , Animais , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia
20.
Mol Cell Biochem ; 401(1-2): 61-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25481685

RESUMO

Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.


Assuntos
Antioxidantes/farmacologia , Isotiocianatos/farmacologia , Mioblastos Cardíacos/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mioblastos Cardíacos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA