Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(12): 5189-5199, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33135881

RESUMO

In a material-guided approach, instructive scaffolds that leverage potent chemistries may efficiently promote bone regeneration. A siloxane macromer has been previously shown to impart osteoinductivity and bioactivity when included in poly(ethylene glycol) diacrylate (PEG-DA) hydrogel scaffolds. Herein, phosphonated-siloxane macromers were evaluated for enhancing the osteogenic potential of siloxane-containing PEG-DA scaffolds. Two macromers were prepared with different phosphonate pendant group concentrations, poly(diethyl(2-(propylthio)ethyl)phosphonate methylsiloxane) diacrylate (PPMS-DA) and 25%-phosphonated analogue (PPMS-DA 25%). Macroporous, templated scaffolds were prepared by cross-linking these macromers with PEG-DA at varying mol % (15:85, 30:70, and 45:55 PPMS-DA to PEG-DA; 30:70 PPMS-DA 25% to PEG-DA). Other scaffolds were also prepared by combining PEG-DA with PDMS-MA (i.e., no phosphonate) or with vinyl phosphonate (i.e., no siloxane). Scaffold material properties were thoroughly assessed, including pore morphology, hydrophobicity, swelling, modulus, and bioactivity. Scaffolds were cultured with human bone marrow-derived mesenchymal stem cells (normal media) and calcium deposition and protein expression were assessed at 14 and 28 days.


Assuntos
Hidrogéis , Siloxanas , Regeneração Óssea , Humanos , Osteogênese , Polietilenoglicóis , Engenharia Tecidual , Alicerces Teciduais
2.
Tissue Eng Part C Methods ; 28(12): 656-671, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36329666

RESUMO

The immunomodulatory capacity of the human mesenchymal stromal cell (MSC) secretome has been a critical driver for the development of cell-free MSC products, such as conditioned medium (CM), for regenerative medicine applications. This is particularly true as cell-free MSC products present several advantages over direct autologous or allogeneic MSC delivery with respect to safety, manufacturability, and defined potency. Recently, significant effort has been placed into creating novel MSC CM formulations with an immunomodulatory capacity tailored for specific regenerative contexts. For instance, the immunoregulatory nature of MSC CM has previously been tuned through a number of cytokine-priming strategies. Herein, we propose an alternate method to tailor the immunomodulatory "phenotype" of cytokine-primed MSC CM through coupling with the pharmacological agent, suramin. Suramin interferes with the signaling of purines including extracellular adenosine triphosphate (ATP), which plays a critical role in the activation of the innate immune system after injury. Toward this end, human THP-1-derived macrophages were activated to a proinflammatory phenotype and treated with (1) unprimed/native MSC CM, (2) interferon-γ/tumor necrosis factor α-primed MSC CM (primed CM), (3) suramin alone, or (4) primed MSC CM and suramin (primed CM/suramin). Markers of key macrophage functions-cytokine secretion, autophagy, oxidative stress modulation, and activation/migration-were assessed. Consistent with previous literature, primed CM elevated macrophage secretion of several proinflammatory and pleiotropic cytokines relative to native CM; whereas addition of suramin imparted consistent shifts in terms of TNFα (↓), interleukin-10 (↓), and hepatocyte growth factor (↑) irrespective of CM. In addition, both primed CM and suramin, individually and combined, increased reactive oxygen species production relative to native CM, and addition of suramin to primed CM shifted levels of CX3CL1, a factor involved in ATP-associated macrophage regulation. Varimax rotation assessment of the secreted cytokine profiles confirmed that primed CM/suramin resulted in a THP-1 phenotypic shift away from the lipopolysaccharide-activated proinflammatory state that was distinct from that of primed CM or native CM alone. This altered primed CM/suramin-associated phenotype may prove beneficial for healing in certain regenerative contexts. These results may inform future work coupling antipurinergic treatments with MSC-derived therapies in regenerative medicine applications.


Assuntos
Células-Tronco Mesenquimais , Suramina , Humanos , Meios de Cultivo Condicionados/farmacologia , Suramina/farmacologia , Suramina/metabolismo , Macrófagos , Citocinas/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Cannabis Cannabinoid Res ; 6(3): 253-263, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33998893

RESUMO

Background: The nonpsychotropic phytocannabinoid cannabidiol (CBD) presents itself as a potentially safe and effective anti-inflammatory treatment relative to clinical standards. In this present study, we compare the capacity of CBD to the corticosteroid dexamethasone (Dex) in altering the secreted protein landscape of activated macrophages and speculate upon the mechanism underpinning these alterations. Materials and Methods: Human THP-1 monocytes were differentiated into macrophages (THP-1 derived macrophages [tMACs]), activated with lipopolysaccharide (LPS), and then treated with 5, 10, 25, 50, or 100 µM CBD or 10 µM Dex for 24 h. Following treatment, cytotoxicity of CBD and protein expression levels from culture supernatants and from whole cell lysates were assessed for secreted and intracellular proteins, respectively. Results: High concentration (50 and 100 µM) CBD treatments exhibit a cytotoxic effect on LPS-activated tMACs following the 24-h treatment. Relative to the LPS-activated and untreated control (M[LPS]), both 25 µM CBD and 10 µM Dex reduced expression of pro-inflammatory markers-tumor necrosis factor alpha, interleukin 1 beta, and regulated on activation, normal T cell expressed and secreted (RANTES)-as well as the pleiotropic marker interleukin-6 (IL-6). A similar trend was observed for anti-inflammatory markers interleukin-10 and vascular endothelial growth factor (VEGF). Dex further reduced secreted levels of monocyte chemoattractant protein-1 in addition to suppressing IL-6 and VEGF beyond treatments with CBD. The anti-inflammatory capacity of 25 µM CBD was concurrent with reduction in levels of phosphorylated mammalian target of rapamycin Ser 2448, endothelial nitric oxide synthase, and induction of cyclooxygenase 2 relative to M(LPS). This could suggest that the observed effects on macrophage immune profile may be conferred through inhibition of mammalian target of rapamycin complex 1 and ensuing induction of autophagy. Conclusion: Cumulatively, these data demonstrate cytotoxicity of high concentration CBD treatment. The data reported herein largely agree with other literature demonstrating the anti-inflammatory effects of CBD. However, there is discrepancy within literature surrounding efficacious concentrations and effects of CBD on specific secreted proteins. These data expand upon previous work investigating the effects of CBD on inflammatory protein expression in macrophages, as well as provide insight into the mechanism by which these effects are conferred.


Assuntos
Autofagia/efeitos dos fármacos , Canabidiol/farmacologia , Dexametasona/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Óxido Nítrico Sintase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
J Alzheimers Dis ; 84(2): 647-658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569964

RESUMO

BACKGROUND: A significant subset of patients with Alzheimer's disease (AD) exhibit low bone mineral density and are therefore more fracture-prone, relative to their similarly aged neurotypical counterparts. In addition to chronic immune hyperactivity, behavioral dysregulation of effector peripheral sympathetic neurons-which densely innervate bone and potently modulate bone remodeling-is implicated in this pathological bone reformation. OBJECTIVE: Thus, there exists a pressing need for a robust in vitro model which allows interrogation of the paracrine interactions between the putative mediators of AD-related osteopenia: sympathetic neurons (SNs) and mesenchymal stem cells (MSCs). METHODS: Toward this end, activated SN-like PC12 cells and bone marrow derived MSCs were cultured in poly(ethylene glycol) diacrylate (PEGDA) hydrogels in the presence or absence of the AD-relevant inflammatory cytokine tumor necrosis factor alpha (TNF-α) under mono- and co-culture conditions. RESULTS: PC12s and MSCs exposed separately to TNF-α displayed increased expression of pro-inflammatory mediators and decreased osteopontin (OPN), respectively. These data indicate that TNF-α was capable of inducing a dysregulated state in both cell types consistent with AD. Co-culture of TNF-α-activated PC12s and MSCs further exacerbated pathological behaviors in both cell types. Specifically, PC12s displayed increased secretion of interleukin 6 relative to TNF-α stimulated monoculture controls. Similarly, MSCs demonstrated a further reduction in osteogenic capacity relative to TNF-α stimulated monoculture controls, as illustrated by a significant decrease in OPN and collagen type I alpha I chain. CONCLUSION: Taken together, these data may indicate that dysregulated sympathetic activity may contribute to AD-related bone loss.


Assuntos
Doença de Alzheimer/complicações , Doenças Ósseas Metabólicas/fisiopatologia , Células-Tronco Mesenquimais/citologia , Células PC12 , Sistema Nervoso Simpático/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Idoso , Animais , Medula Óssea , Técnicas de Cocultura , Humanos , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Ratos
5.
J Biomed Mater Res A ; 109(11): 2334-2345, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33988292

RESUMO

Engineering osteoinductive, self-fitting scaffolds offers a potential treatment modality to repair irregularly shaped craniomaxillofacial bone defects. Recently, we innovated on osteoinductive poly(ε-caprolactone)-diacrylate (PCL-DA) shape memory polymers (SMPs) to incorporate poly-L-lactic acid (PLLA) into the PCL-DA network, forming a semi-interpenetrating network (semi-IPN). Scaffolds formed from these PCL-DA/PLLA semi-IPNs display stiffnesses within the range of trabecular bone and accelerated degradation relative to scaffolds formed from slowly degrading PCL-DA SMPs. Herein, we demonstrate for the first time that PCL-DA/PLLA semi-IPN SMP scaffolds show increased intrinsic osteoinductivity relative to PCL-DA. We also confirm that application of a bioinspired polydopamine (PD) coating further improves the osteoinductive capacity of these PCL-DA/PLLA semi-IPN SMPs. In the absence of osteogenic supplements, protein level assessment of human mesenchymal stem cells (h-MSCs) cultured in PCL-DA/PLLA scaffolds revealed an increase in expression of osteogenic markers osterix, bone morphogenetic protein-4 (BMP-4), and collagen 1 alpha 1 (COL1A1), relative to PCL-DA scaffolds and osteogenic medium controls. Likewise, the expression of runt-related transcription factor 2 (RUNX2) and BMP-4 was elevated in the presence of PD-coating. In contrast, the chondrogenic and adipogenic responses associated with the scaffolds matched or were reduced relative to osteogenic medium controls, indicating that the scaffolds display intrinsic osteoinductivity.


Assuntos
Caproatos/química , Indóis/química , Lactonas/química , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Poliésteres/química , Polímeros/química , Materiais Inteligentes/química , Engenharia Tecidual , Alicerces Teciduais/química , Humanos
6.
Cartilage ; 13(2_suppl): 713S-721S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32975437

RESUMO

OBJECTIVE: The objective of this study was to compare the effects of hyperosmolar sodium (Na+), lithium (Li+) and potassium (K+) on catabolic and inflammatory osteoarthritis (OA) markers and sulfated glycosaminoglycan (sGAG) loss in TNF-α-stimulated cartilage explants. METHODS: Explants from bovine stifle joints were stimulated with TNF-α for 1 day to induce cartilage degradation followed by supplementation with 50 mM potassium chloride (KCl), 50 mM lithium chloride (LiCl), 50 mM sodium chloride (NaCl), or 100 nM dexamethasone for an additional 6 days. We assessed the effect of TNF-α stimulation and hyperosmolar ionic treatment on sGAG loss and expression of OA-associated proteins: ADAMTS-5, COX-2, MMP-1, MMP-13, and VEGF. RESULTS: TNF-α treatment increased sGAG loss (P < 0.001) and expression of COX-2 (P = 0.018), MMP-13 (P < 0.001), and VEGF (P = 0.017) relative to unstimulated controls. Relative to activated controls, LiCl and dexamethasone treatment attenuated sGAG loss (P = 0.008 and P = 0.042, respectively) and expression of MMP-13 (P = 0.005 and P = 0.036, respectively). In contrast, KCl treatment exacerbated sGAG loss (P = 0.032) and MMP-1 protein expression (P = 0.010). NaCl treatment, however, did not alter sGAG loss or expression of OA-related proteins. Comparing LiCl and KCl treatment shows a potent reduction (P < 0.05) in catabolic and inflammatory mediators following LiCl treatment. CONCLUSION: These results suggest that these ionic species elicit varying responses in TNF-α-stimulated explants. Cumulatively, these findings support additional studies of hyperosmolar ionic solutions for potential development of novel intraarticular injections targeting OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Bovinos , Glicosaminoglicanos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Fenótipo
7.
ACS Appl Bio Mater ; 2(1): 118-126, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016334

RESUMO

Sophorolipids are a class of glycolipids that can be polymerized via ring-opening metathesis polymerization giving rise to bioresorbable biomaterials. The surface chemistry of the resulting poly(sophorolipids) (pLSLs) can be modified using a combination of enzymatic and "click" chemistries to insert bioactive groups that influence cellular behavior. Mesenchymal stem cells (MSCs) are being actively investigated for engineered bone grafts for fracture repair due to their osteogenic potential, and more recently, due to their immunomodulatory capacity. The long-term goal of this work is to utilize functionalized pLSL foams loaded with MSCs as bioresorbable scaffolds for bone fracture healing. Toward this goal, the present study evaluated the effect of various pLSL chemistries on the osteogenic and immunomodulatory behavior of MSCs. pLSLs functionalized with PO4, NH2, or COOH small functional groups were fabricated into open porous foams and then cultured with MSCs in the presence of osteogenic medium for 72 h. Protein level assessments demonstrated that the PO4-functionalized pLSL foams supported the highest degree of MSC osteogenesis as well as the highest levels of immunomodulatory factors pertinent to improve bone fracture healing. Cumulatively, these results suggest that further investigation of the long-term osteogenic commitment of MSCs in PO4-functionalized pLSL foams is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA