Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Genomics ; 10 Suppl 2: 22, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27461247

RESUMO

BACKGROUND: Snail is a typical transcription factor that could induce epithelial-mesenchymal transition (EMT) and cancer progression. There are some related reports about the clinical significance of snail protein expression in gastric cancer. However, the published results were not completely consistent. This study was aimed to investigate snail expression and clinical significance in gastric cancer. RESULTS: A systematic review of PubMed, CNKI, Weipu, and Wanfang database before March 2015 was conducted. We established an inclusion criterion according to subjects, method of detection, and results evaluation of snail protein. Meta-analysis was conducted using RevMan4.2 software. And merged odds ratio (OR) and 95 % CI (95 % confidence interval) were calculated. Also, forest plots and funnel plot were used to assess the potential of publication bias. A total of 10 studies were recruited. The meta-analysis was conducted to evaluate the positive rate of snail protein expression. OR and 95 % CI for different groups were listed below: (1) gastric cancer and para-carcinoma tissue [OR = 6.15, 95 % CI (4.70, 8.05)]; (2) gastric cancer and normal gastric tissue [OR = 17.00, 95 % CI (10.08, 28.67)]; (3) non-lymph node metastasis and lymph node metastasis [OR = 0.40, 95 % CI (0.18, 0.93)]; (4) poor differentiated cancer, highly differentiated cancer, and moderate cancer [OR = 3.34, 95 % CI (2.22, 5.03)]; (5) clinical stage TI + TII and stage TIII + TIV [OR = 0.38, 95 % CI (0.23, 0.60)]; (6) superficial muscularis and deep muscularis [OR = 0.18, 95 % CI (0.11, 0.31)]. CONCLUSIONS: Our results indicated that the increase of snail protein expression may play an important role in the carcinogenesis, progression, and metastasis of gastric cancer. And this result might provide instruction for the diagnosis, therapy, and prognosis of gastric cancer.


Assuntos
Mucosa Gástrica/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição da Família Snail/genética , Neoplasias Gástricas/genética , Redes Reguladoras de Genes , Humanos , Metástase Linfática , Invasividade Neoplásica , Estadiamento de Neoplasias , Razão de Chances , Prognóstico , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/metabolismo , Estômago/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo
2.
BMC Bioinformatics ; 15 Suppl 17: I1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25559210

RESUMO

Advances of high-throughput technologies have rapidly produced more and more data from DNAs and RNAs to proteins, especially large volumes of genome-scale data. However, connection of the genomic information to cellular functions and biological behaviours relies on the development of effective approaches at higher systems level. In particular, advances in RNA-Seq technology has helped the studies of transcriptome, RNA expressed from the genome, while systems biology on the other hand provides more comprehensive pictures, from which genes and proteins actively interact to lead to cellular behaviours and physiological phenotypes. As biological interactions mediate many biological processes that are essential for cellular function or disease development, it is important to systematically identify genomic information including genetic mutations from GWAS (genome-wide association study), differentially expressed genes, bidirectional promoters, intrinsic disordered proteins (IDP) and protein interactions to gain deep insights into the underlying mechanisms of gene regulations and networks. Furthermore, bidirectional promoters can co-regulate many biological pathways, where the roles of bidirectional promoters can be studied systematically for identifying co-regulating genes at interactive network level. Combining information from different but related studies can ultimately help revealing the landscape of molecular mechanisms underlying complex diseases such as cancer.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Neoplasias/genética , Neoplasias/patologia , Transcriptoma , Pesquisa Translacional Biomédica , Genômica , Humanos , Fenótipo
3.
BMC Bioinformatics ; 15 Suppl 17: S2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25559354

RESUMO

BACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is one of fatal genitourinary diseases and accounts for most malignant kidney tumours. KIRC has been shown resistance to radiotherapy and chemotherapy. Like many types of cancers, there is no curative treatment for metastatic KIRC. Using advanced sequencing technologies, The Cancer Genome Atlas (TCGA) project of NIH/NCI-NHGRI has produced large-scale sequencing data, which provide unprecedented opportunities to reveal new molecular mechanisms of cancer. We combined differentially expressed genes, pathways and network analyses to gain new insights into the underlying molecular mechanisms of the disease development. RESULTS: Followed by the experimental design for obtaining significant genes and pathways, comprehensive analysis of 537 KIRC patients' sequencing data provided by TCGA was performed. Differentially expressed genes were obtained from the RNA-Seq data. Pathway and network analyses were performed. We identified 186 differentially expressed genes with significant p-value and large fold changes (P < 0.01, |log(FC)| > 5). The study not only confirmed a number of identified differentially expressed genes in literature reports, but also provided new findings. We performed hierarchical clustering analysis utilizing the whole genome-wide gene expressions and differentially expressed genes that were identified in this study. We revealed distinct groups of differentially expressed genes that can aid to the identification of subtypes of the cancer. The hierarchical clustering analysis based on gene expression profile and differentially expressed genes suggested four subtypes of the cancer. We found enriched distinct Gene Ontology (GO) terms associated with these groups of genes. Based on these findings, we built a support vector machine based supervised-learning classifier to predict unknown samples, and the classifier achieved high accuracy and robust classification results. In addition, we identified a number of pathways (P < 0.04) that were significantly influenced by the disease. We found that some of the identified pathways have been implicated in cancers from literatures, while others have not been reported in the cancer before. The network analysis leads to the identification of significantly disrupted pathways and associated genes involved in the disease development. Furthermore, this study can provide a viable alternative in identifying effective drug targets. CONCLUSIONS: Our study identified a set of differentially expressed genes and pathways in kidney renal clear cell carcinoma, and represents a comprehensive computational approach to analysis large-scale next-generation sequencing data. The pathway and network analyses suggested that information from distinctly expressed genes can be utilized in the identification of aberrant upstream regulators. Identification of distinctly expressed genes and altered pathways are important in effective biomarker identification for early cancer diagnosis and treatment planning. Combining differentially expressed genes with pathway and network analyses using intelligent computational approaches provide an unprecedented opportunity to identify upstream disease causal genes and effective drug targets.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Neoplasias Renais/genética , Rim/metabolismo , Transdução de Sinais , Carcinoma de Células Renais/patologia , Estudos de Casos e Controles , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologia , Máquina de Vetores de Suporte
4.
BMC Genomics ; 12 Suppl 5: I1, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22369358

RESUMO

This is an editorial report of the supplement to BMC Genomics that includes 15 papers selected from the BIOCOMP'10 - The 2010 International Conference on Bioinformatics & Computational Biology as well as other sources with a focus on genomics studies. BIOCOMP'10 was held on July 12-15 in Las Vegas, Nevada. The congress covered a large variety of research areas, and genomics was one of the major focuses because of the fast development in this field. We set out to launch a supplement to BMC Genomics with manuscripts selected from this congress and invited submissions. With a rigorous peer review process, we selected 15 manuscripts that showed work in cutting-edge genomics fields and proposed innovative methodology. We hope this supplement presents the current computational and statistical challenges faced in genomics studies, and shows the enormous promises and opportunities in the genomic future.


Assuntos
Redes Reguladoras de Genes , Genômica , Biologia Computacional , Revisão da Pesquisa por Pares , Medicina de Precisão
5.
BMC Genomics ; 11 Suppl 3: I1, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21143775

RESUMO

Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT Austin), Dr. Aidong Zhang (Buffalo) and Dr. Zhi-Hua Zhou (Nanjing) for their significant contributions to the field of intelligent biological medicine.


Assuntos
Biologia Computacional , Medicina de Precisão , Biologia de Sistemas , Genômica , Humanos
6.
J Healthc Inform Res ; 4(4): 325-364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204938

RESUMO

In recent years, the Internet of Things (IoT) has gained convincing research ground as a new research topic in a wide variety of academic and industrial disciplines, especially in healthcare. The IoT revolution is reshaping modern healthcare systems by incorporating technological, economic, and social prospects. It is evolving healthcare systems from conventional to more personalized healthcare systems through which patients can be diagnosed, treated, and monitored more easily. The current global challenge of the pandemic caused by the novel severe respiratory syndrome coronavirus 2 presents the greatest global public health crisis since the pandemic influenza outbreak of 1918. At the time this paper was written, the number of diagnosed COVID-19 cases around the world had reached more than 31 million. Since the pandemic started, there has been a rapid effort in different research communities to exploit a wide variety of technologies to combat this worldwide threat, and IoT technology is one of the pioneers in this area. In the context of COVID-19, IoT-enabled/linked devices/applications are utilized to lower the possible spread of COVID-19 to others by early diagnosis, monitoring patients, and practicing defined protocols after patient recovery. This paper surveys the role of IoT-based technologies in COVID-19 and reviews the state-of-the-art architectures, platforms, applications, and industrial IoT-based solutions combating COVID-19 in three main phases, including early diagnosis, quarantine time, and after recovery.

7.
BMC Genomics ; 10 Suppl 1: I1, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19594867

RESUMO

The advent of high-throughput next generation sequencing technologies have fostered enormous potential applications of supercomputing techniques in genome sequencing, epi-genetics, metagenomics, personalized medicine, discovery of non-coding RNAs and protein-binding sites. To this end, the 2008 International Conference on Bioinformatics and Computational Biology (Biocomp) - 2008 World Congress on Computer Science, Computer Engineering and Applied Computing (Worldcomp) was designed to promote synergistic inter/multidisciplinary research and education in response to the current research trends and advances. The conference attracted more than two thousand scientists, medical doctors, engineers, professors and students gathered at Las Vegas, Nevada, USA during July 14-17 and received great success. Supported by International Society of Intelligent Biological Medicine (ISIBM), International Journal of Computational Biology and Drug Design (IJCBDD), International Journal of Functional Informatics and Personalized Medicine (IJFIPM) and the leading research laboratories from Harvard, M.I.T., Purdue, UIUC, UCLA, Georgia Tech, UT Austin, U. of Minnesota, U. of Iowa etc, the conference received thousands of research papers. Each submitted paper was reviewed by at least three reviewers and accepted papers were required to satisfy reviewers' comments. Finally, the review board and the committee decided to select only 19 high-quality research papers for inclusion in this supplement to BMC Genomics based on the peer reviews only. The conference committee was very grateful for the Plenary Keynote Lectures given by: Dr. Brian D. Athey (University of Michigan Medical School), Dr. Vladimir N. Uversky (Indiana University School of Medicine), Dr. David A. Patterson (Member of United States National Academy of Sciences and National Academy of Engineering, University of California at Berkeley) and Anousheh Ansari (Prodea Systems, Space Ambassador). The theme of the conference to promote synergistic research and education has been achieved successfully.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/tendências , Congressos como Assunto
8.
BMC Genomics ; 9 Suppl 2: I1, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18831773

RESUMO

Supported by National Science Foundation (NSF), International Society of Intelligent Biological Medicine (ISIBM), International Journal of Computational Biology and Drug Design and International Journal of Functional Informatics and Personalized Medicine, IEEE 7th Bioinformatics and Bioengineering attracted more than 600 papers and 500 researchers and medical doctors. It was the only synergistic inter/multidisciplinary IEEE conference with 24 Keynote Lectures, 7 Tutorials, 5 Cutting-Edge Research Workshops and 32 Scientific Sessions including 11 Special Research Interest Sessions that were designed dynamically at Harvard in response to the current research trends and advances. The committee was very grateful for the IEEE Plenary Keynote Lectures given by: Dr. A. Keith Dunker (Indiana), Dr. Jun Liu (Harvard), Dr. Brian Athey (Michigan), Dr. Mark Borodovsky (Georgia Tech and President of ISIBM), Dr. Hamid Arabnia (Georgia and Vice-President of ISIBM), Dr. Ruzena Bajcsy (Berkeley and Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Chih-Ming Ho (UCLA and Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Andy Baxevanis (United States National Institutes of Health), Dr. Arif Ghafoor (Purdue), Dr. John Quackenbush (Harvard), Dr. Eric Jakobsson (UIUC), Dr. Vladimir Uversky (Indiana), Dr. Laura Elnitski (United States National Institutes of Health) and other world-class scientific leaders. The Harvard meeting was a large academic event 100% full-sponsored by IEEE financially and academically. After a rigorous peer-review process, the committee selected 27 high-quality research papers from 600 submissions. The committee is grateful for contributions from keynote speakers Dr. Russ Altman (IEEE BIBM conference keynote lecturer on combining simulation and machine learning to recognize function in 4D), Dr. Mary Qu Yang (IEEE BIBM workshop keynote lecturer on new initiatives of detecting microscopic disease using machine learning and molecular biology, http://ieeexplore.ieee.org/servlet/opac?punumber=4425386) and Dr. Jack Y. Yang (IEEE BIBM workshop keynote lecturer on data mining and knowledge discovery in translational medicine) from the first IEEE Computer Society BioInformatics and BioMedicine (IEEE BIBM) international conference and workshops, November 2-4, 2007, Silicon Valley, California, USA.


Assuntos
Biologia Computacional , Genômica , Pesquisa sobre Serviços de Saúde , Redes Reguladoras de Genes , Genoma Humano , Humanos , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Conformação Proteica
9.
BMC Genomics ; 9 Suppl 1: I1, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18366597

RESUMO

Bioinformatics and Genomics are closely related disciplines that hold great promises for the advancement of research and development in complex biomedical systems, as well as public health, drug design, comparative genomics, personalized medicine and so on. Research and development in these two important areas are impacting the science and technology.High throughput sequencing and molecular imaging technologies marked the beginning of a new era for modern translational medicine and personalized healthcare. The impact of having the human sequence and personalized digital images in hand has also created tremendous demands of developing powerful supercomputing, statistical learning and artificial intelligence approaches to handle the massive bioinformatics and personalized healthcare data, which will obviously have a profound effect on how biomedical research will be conducted toward the improvement of human health and prolonging of human life in the future. The International Society of Intelligent Biological Medicine (http://www.isibm.org) and its official journals, the International Journal of Functional Informatics and Personalized Medicine (http://www.inderscience.com/ijfipm) and the International Journal of Computational Biology and Drug Design (http://www.inderscience.com/ijcbdd) in collaboration with International Conference on Bioinformatics and Computational Biology (Biocomp), touch tomorrow's bioinformatics and personalized medicine throughout today's efforts in promoting the research, education and awareness of the upcoming integrated inter/multidisciplinary field. The 2007 international conference on Bioinformatics and Computational Biology (BIOCOMP07) was held in Las Vegas, the United States of American on June 25-28, 2007. The conference attracted over 400 papers, covering broad research areas in the genomics, biomedicine and bioinformatics. The Biocomp 2007 provides a common platform for the cross fertilization of ideas, and to help shape knowledge and scientific achievements by bridging these two very important disciplines into an interactive and attractive forum. Keeping this objective in mind, Biocomp 2007 aims to promote interdisciplinary and multidisciplinary education and research. 25 high quality peer-reviewed papers were selected from 400+ submissions for this supplementary issue of BMC Genomics. Those papers contributed to a wide-range of important research fields including gene expression data analysis and applications, high-throughput genome mapping, sequence analysis, gene regulation, protein structure prediction, disease prediction by machine learning techniques, systems biology, database and biological software development. We always encourage participants submitting proposals for genomics sessions, special interest research sessions, workshops and tutorials to Professor Hamid R. Arabnia (hra@cs.uga.edu) in order to ensure that Biocomp continuously plays the leadership role in promoting inter/multidisciplinary research and education in the fields. Biocomp received top conference ranking with a high score of 0.95/1.00. Biocomp is academically co-sponsored by the International Society of Intelligent Biological Medicine and the Research Laboratories and Centers of Harvard University--Massachusetts Institute of Technology, Indiana University--Purdue University, Georgia Tech--Emory University, UIUC, UCLA, Columbia University, University of Texas at Austin and University of Iowa etc. Biocomp--Worldcomp brings leading scientists together across the nation and all over the world and aims to promote synergistic components such as keynote lectures, special interest sessions, workshops and tutorials in response to the advances of cutting-edge research.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Genômica/educação , Genômica/métodos , Pesquisa , Redes Reguladoras de Genes/genética , Análise em Microsséries/métodos , Conformação Proteica , Análise de Sequência de DNA/métodos
10.
BMC Med Genomics ; 6 Suppl 1: S1, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23369188

RESUMO

This is an introduction to the supplement to BMC Medical Genomics that includes 16 papers selected from the 2011 World Congress in Computer Science, Computer Engineering, Applied Computing as well as other sources with a focus on genomics studies with a focus on human diseases.


Assuntos
Genômica/tendências , Genoma Humano , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
11.
BMC Syst Biol ; 5 Suppl 3: I1, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22784614

RESUMO

We present a report of the BIOCOMP'10 - The 2010 International Conference on Bioinformatics & Computational Biology and other related work in the area of systems biology.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Biologia de Sistemas/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA