Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836643

RESUMO

The effective management of plastic waste has become a global imperative, given our reliance on a linear model in which plastics are manufactured, used once, and then discarded. This has led to the pervasive accumulation of plastic debris in landfills and environmental contamination. Recognizing this issue, numerous initiatives are underway to address the environmental repercussions associated with plastic disposal. In this study, we investigate the possible molecular mechanism of polyurethane esterase A (PueA), which has been previously identified as responsible for the degradation of a polyester polyurethane (PU) sample in Pseudomonas chlororaphis, as an effort to develop enzymatic biodegradation solutions. After generating the unsolved 3D structure of the protein by AlphaFold2 from its known genome, the enzymatic hydrolysis of the same model PU compound previously used in experiments has been explored employing QM/MM molecular dynamics simulations. This required a preliminary analysis of the 3D structure of the apo-enzyme, identifying the putative active site, and the search for the optimal protein-substrate binding site. Finally, the resulting free energy landscape indicates that wild-type PueA can degrade PU chains, although with low-level activity. The reaction takes place by a characteristic four-step path of the serine hydrolases, involving an acylation followed by a diacylation step. Energetics and structural analysis of the evolution of the active site along the reaction suggests that PueA can be considered a promising protein scaffold for further development to achieve efficient biodegradation of PU.

2.
J Chem Inf Model ; 63(4): 1301-1312, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36762429

RESUMO

Targeted covalent inhibitors hold promise for drug discovery, particularly for kinases. Targeting the catalytic lysine of epidermal growth factor receptor (EGFR) has attracted attention as a new strategy to overcome resistance due to the emergence of C797S mutation. Sulfonyl fluoride derivatives able to inhibit EGFRL858R/T790M/C797S by sulfonylation of Lys745 have been reported. However, atomistic details of this process are still poorly understood. Here, we describe the mechanism of inhibition of an innovative class of compounds that covalently engage the catalytic lysine of EGFR, through a sulfur(VI) fluoride exchange (SuFEx) process, with the help of hybrid quantum mechanics/molecular mechanics (QM/MM) and path collective variables (PCVs) approaches. Our simulations identify the chemical determinants accounting for the irreversible activity of agents targeting Lys745 and provide hints for the further optimization of sulfonyl fluoride agents.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Mutação , Lisina , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética
3.
Biochemistry ; 60(16): 1243-1247, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33829766

RESUMO

Methylation of 2-deoxyuridine-5'-monophosphate (dUMP) at the C5 position by the obligate dimeric thymidylate synthase (TSase) in the sole de novo biosynthetic pathway to thymidine 5'-monophosphate (dTMP) proceeds by forming a covalent ternary complex with dUMP and cosubstrate 5,10-methylenetetrahydrofolate. The crystal structure of an analog of this intermediate gives important mechanistic insights but does not explain the half-of-the-sites activity of the enzyme. Recent experiments showed that the C5 proton and the catalytic Cys are eliminated in a concerted manner from the covalent ternary complex to produce a noncovalent bisubstrate intermediate. Here, we report the crystal structure of TSase with a close synthetic analog of this intermediate in which it has partially reacted with the enzyme but in only one protomer, consistent with the half-of-the-sites activity of this enzyme. Quantum mechanics/molecular mechanics simulations confirmed that the analog could undergo catalysis. The crystal structure shows a new water 2.9 Å from the critical C5 of the dUMP moiety, which in conjunction with other residues in the network, may be the elusive general base that abstracts the C5 proton of dUMP during the reaction.


Assuntos
Timidilato Sintase/química , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Timidilato Sintase/metabolismo
4.
Chemistry ; 27(39): 10142-10150, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33852187

RESUMO

A computational study of the two possible inhibition mechanisms of rhodesain cysteine protease by the dipeptidyl enoate Cbz-Phe-Leu-CH=CH-CO2 C2 H5 has been carried out by means of molecular dynamics simulations with hybrid QM/MM potentials. The low free energy barriers confirm that the Cys25 residue can attack both Cß and C1 atoms of the inhibitor, confirming a dual mode of action in the inhibition of the rhodesain by enoates. According to the results, the inhibition process through the Cys25 attack on the Cß atom of the inhibitor is an exergonic and irreversible process, while the inhibition process when Cys25 attacks on the C1 atom of the inhibitor is and exergonic but reversible process. The interactions between the inhibitor and rhodesain suggest that P2 is the most important fragment to consider in the design of new efficient inhibitors of rhodesain. These results may be useful for the design of new inhibitors of rhodesain and other related cysteine proteases based on dipeptidyl enoates scaffolds.


Assuntos
Cisteína Proteases , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Simulação de Dinâmica Molecular
5.
J Chem Inf Model ; 61(6): 3041-3051, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34085821

RESUMO

The environmental problems derived from the generalized plastic consumption and disposal could find a friendly solution in enzymatic biodegradation. Recently, two hydrolases from Ideonella sakaiensis 201-F6 and the metagenome-derived leaf-branch compost cutinase (LCC), more specially the improved ICCG variant, have revealed degradation activity toward poly ethylene terephthalate (PET). In the present study, the reaction mechanism of this polymer breakage is studied at an atomic level by multiscale QM/MM molecular dynamics simulations, using semiempirical and DFT Hamiltonians to describe the QM region. The obtained free energy surfaces confirmed a characteristic four-step path for both systems, with activation energies in agreement with the experimental observations. Structural analysis of the evolution of the active site along the reaction progress and the study of electrostatic effects generated by the proteins reveal the similarity in the behavior of the active site of these two enzymes. The origin of the apparent better performance of the LCC-ICCG protein over PETase must be due to its capabilities of working at higher temperature and its intrinsic relationship with the crystallinity grade of the polymer. Our results may be useful for the development of more efficient enzymes in the biodegradation of PET.


Assuntos
Burkholderiales , Polietilenotereftalatos , Proteínas de Bactérias , Biodegradação Ambiental , Hidrolases
6.
Chemistry ; 26(9): 2002-2012, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31692123

RESUMO

In this work a computational study of the mechanism of inhibition of cruzain, rhodesain, and cathepsin L cysteine proteases by the dipeptidyl nitroalkene Cbz-Phe-Ala-CH=CH-NO2 has been carried out by means of molecular dynamics simulations with hybrid QM/MM potentials. The free-energy surfaces confirmed that the inhibition takes place by the formation of a covalent bond between the protein and the ß-carbon atom of the inhibitor. According to the results, the tested inhibitor should be a much more efficient inhibitor of cruzain than of rhodesain, and little activity would be expected against cathepsin L, in total correspondence with the available experimental data. The origin of these differences may lie in the different stabilizing electrostatic interactions established between the inhibitor and the residues of the active site and S2 pocket of these enzymes. These results may be useful for the rational design of new dipeptidyl nitroalkenes with higher and more selective inhibitory activity against cysteine proteases.


Assuntos
Alcenos/química , Catepsina L/metabolismo , Inibidores de Cisteína Proteinase/química , Simulação de Dinâmica Molecular , Teoria Quântica , Alcenos/metabolismo , Sítios de Ligação , Domínio Catalítico , Catepsina L/antagonistas & inibidores , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Dipeptídeos/química , Humanos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Termodinâmica
7.
Phys Chem Chem Phys ; 19(20): 12740-12748, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28480929

RESUMO

Cysteine proteases are the most abundant proteases in parasitic protozoa and they are essential enzymes to the life cycle of several of them, thus becoming attractive therapeutic targets for the development of new inhibitors. In this paper, a computational study of the inhibition mechanism of cysteine protease by dipeptidyl-2,3-epoxyketone Cbz-Phe-Hph-(S), a recently proposed inhibitor, has been carried out by means of molecular dynamics (MD) simulations with hybrid QM/MM potentials. The computed free energy surfaces of the inhibition mechanism of cysteine proteases by peptidyl epoxyketones showing how the activation of the epoxide ring and the attack of Cys25 on either C2 or C3 atoms take place in a concerted manner. According to our results, the acid species responsible for the protonation of the oxygen atom of the ring would be able to conserve His159, in contrast to previous studies that proposed a water molecule as the activating species. The low activation free energies for the reaction where Cys25 attacks the C2 atom of the epoxide ring (12.1 kcal mol-1) or to the C3 atom (15.4 kcal mol-1), together with the high negative reaction energies suggest that the derivatives of peptidyl-2,3-epoxyketones can be used to develop new potent inhibitors for the treatment of Chagas disease.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Cetonas/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Compostos de Epóxi/química , Cetonas/química , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Termodinâmica , Trypanosoma cruzi/metabolismo
8.
Biochemistry ; 54(21): 3381-91, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25965914

RESUMO

Cruzain is a primary cysteine protease expressed by the protozoan parasite Trypanosoma cruzi during Chagas disease infection, and thus, the development of inhibitors of this protein is a promising target for designing an effective therapy against the disease. In this paper, the mechanism of inhibition of cruzain by two different irreversible peptidyl halomethyl ketones (PHK) inhibitors has been studied by means of hybrid quantum mechanics/molecular mechanics-molecular dynamics (MD) simulations to obtain a complete representation of the possible free energy reaction paths. These have been traced on free energy surfaces in terms of the potential of mean force computed at AM1d/MM and DFT/MM levels of theory. An analysis of the possible reaction mechanisms of the inhibition process has been performed showing that the nucleophilic attack of an active site cysteine, Cys25, on a carbon atom of the inhibitor and the cleavage of the halogen-carbon bond take place in a single step. PClK appears to be much more favorable than PFK from a kinetic point of view. This result would be in agreement with experimental studies in other papain-like enzymes. A deeper analysis of the results suggests that the origin of the differences between PClK and PFK can be the different stabilizing interactions established between the inhibitors and the residues of the active site of the protein. Any attempt to explore the viability of the inhibition process through a stepwise mechanism involving the formation of a thiohemiketal intermediate and a three-membered sulfonium intermediate has been unsuccessful. Nevertheless, a mechanism through a protonated thiohemiketal, with participation of His159 as a proton donor, appears to be feasible despite showing higher free energy barriers. Our results suggest that PClK can be used as a starting point to develop a proper inhibitor of cruzain.


Assuntos
Doença de Chagas/microbiologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Domínio Catalítico/efeitos dos fármacos , Cisteína Endopeptidases/química , Humanos , Cetonas/química , Cetonas/farmacologia , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Protozoários/química , Trypanosoma cruzi/efeitos dos fármacos
9.
Biochemistry ; 53(20): 3336-46, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24811524

RESUMO

Because of the increasing resistance of malaria parasites to antimalarial drugs, the lack of highly effective vaccines, and an inadequate control of mosquito vectors, the problem is growing, especially in the developing world. New approaches to drug development are consequently required. One of the proteases involved in the degradation of human hemoglobin is named falcipain-2 (FP2), which has emerged as a promising target for the development of novel antimalarial drugs. However, very little is known about the inhibition of FP2. In this paper, the inhibition of FP2 by the epoxysuccinate E64 has been studied by molecular dynamics (MD) simulations using hybrid AM1d/MM and M06-2X/MM potentials to obtain a complete picture of the possible free energy reaction paths. A thorough analysis of the reaction mechanism has been conducted to understand the inhibition of FP2 by E64. According to our results, the irreversible attack of Cys42 on E64 can take place on both carbon atoms of the epoxy ring because both processes present similar barriers. While the attack on the C2 atom presents a slightly smaller barrier (12.3 vs 13.6 kcal mol(-1)), the inhibitor-protein complex derived from the attack on C3 appears to be much more stabilized. In contrast to previous hypotheses, our results suggest that residues such as Gln171, Asp170, Gln36, Trp43, Asn81, and even His174 would be anchoring the inhibitor in a proper orientation for the reaction to take place. These results may be useful for the rational design of new compounds with higher inhibitory activity.


Assuntos
Antimaláricos/química , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Leucina/análogos & derivados , Modelos Químicos , Simulação de Dinâmica Molecular , Teoria Quântica , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Humanos , Leucina/química , Leucina/metabolismo , Leucina/farmacologia , Plasmodium falciparum/enzimologia
10.
Commun Chem ; 7(1): 15, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238420

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a global public health issue. The viral main protease (Mpro) represents one of the most attractive targets for the development of antiviral drugs. Herein we report peptidyl nitroalkenes exhibiting enzyme inhibitory activity against Mpro (Ki: 1-10 µM) good anti-SARS-CoV-2 infection activity in the low micromolar range (EC50: 1-12 µM) without significant toxicity. Additional kinetic studies of compounds FGA145, FGA146 and FGA147 show that all three compounds inhibit cathepsin L, denoting a possible multitarget effect of these compounds in the antiviral activity. Structural analysis shows the binding mode of FGA146 and FGA147 to the active site of the protein. Furthermore, our results illustrate that peptidyl nitroalkenes are effective covalent reversible inhibitors of the Mpro and cathepsin L, and that inhibitors FGA145, FGA146 and FGA147 prevent infection against SARS-CoV-2.

11.
ACS Catal ; 13(9): 6289-6300, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37180968

RESUMO

Cysteine proteases (CPs) are an important class of enzymes, many of which are responsible for several human diseases. For instance, cruzain of protozoan parasite Trypanosoma cruzi is responsible for the Chagas disease, while the role of human cathepsin L is associated with some cancers or is a potential target for the treatment of COVID-19. However, despite paramount work carried out during the past years, the compounds that have been proposed so far show limited inhibitory action against these enzymes. We present a study of proposed covalent inhibitors of these two CPs, cruzain and cathepsin L, based on the design, synthesis, kinetic measurements, and QM/MM computational simulations on dipeptidyl nitroalkene compounds. The experimentally determined inhibition data, together with the analysis and the predicted inhibition constants derived from the free energy landscape of the full inhibition process, allowed describing the impact of the recognition part of these compounds and, in particular, the modifications on the P2 site. The designed compounds and, in particular, the one with a bulky group (Trp) at the P2 site show promising in vitro inhibition activities against cruzain and cathepsin L for use as a starting lead compound in the development of drugs with medical applications for the treatment of human diseases and future designs.

12.
ACS Catal ; 12(1): 698-708, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35036042

RESUMO

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, shows the need for effective antiviral treatments. Here, we present a simulation study of the inhibition of the SARS-CoV-2 main protease (Mpro), a cysteine hydrolase essential for the life cycle of the virus. The free energy landscape for the mechanism of the inhibition process is explored by QM/MM umbrella sampling and free energy perturbation simulations at the M06-2X/MM level of theory for two proposed peptidyl covalent inhibitors that share the same recognition motif but feature distinct cysteine-targeting warheads. Regardless of the intrinsic reactivity of the modeled inhibitors, namely a Michael acceptor and a hydroxymethyl ketone activated carbonyl, our results confirm that the inhibitory process takes place by means of a two-step mechanism, in which the formation of an ion pair C145/H41 dyad precedes the protein-inhibitor covalent bond formation. The nature of this second step is strongly dependent on the functional groups in the warhead: while the nucleophilic attack of the C145 sulfur atom on the Cα of the double bond of the Michael acceptor takes place concertedly with the proton transfer from H41 to Cß, in the compound with an activated carbonyl, the sulfur attacks the carbonyl carbon concomitant with a proton transfer from H41 to the carbonyl oxygen via the hydroxyl group. An analysis of the free energy profiles, structures along the reaction path, and interactions between the inhibitors and the different pockets of the active site on the protein shows a measurable effect of the warhead on the kinetics and thermodynamics of the process. These results and QM/MM methods can be used as a guide to select warheads to design efficient irreversible and reversible inhibitors of SARS-CoV-2 Mpro.

13.
Chem Sci ; 12(4): 1433-1444, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34163906

RESUMO

The SARS-CoV-2 main protease (Mpro) is essential for replication of the virus responsible for the COVID-19 pandemic, and one of the main targets for drug design. Here, we simulate the inhibition process of SARS-CoV-2 Mpro with a known Michael acceptor (peptidyl) inhibitor, N3. The free energy landscape for the mechanism of the formation of the covalent enzyme-inhibitor product is computed with QM/MM molecular dynamics methods. The simulations show a two-step mechanism, and give structures and calculated barriers in good agreement with experiment. Using these results and information from our previous investigation on the proteolysis reaction of SARS-CoV-2 Mpro, we design two new, synthetically accessible N3-analogues as potential inhibitors, in which the recognition and warhead motifs are modified. QM/MM modelling of the mechanism of inhibition of Mpro by these novel compounds indicates that both may be promising candidates as drug leads against COVID-19, one as an irreversible inhibitor and one as a potential reversible inhibitor.

14.
J Chem Theory Comput ; 13(3): 1375-1388, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28192669

RESUMO

Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA