Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(8): 10554-10569, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791306

RESUMO

Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si-R or Si-O-R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g-1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.

2.
ACS Appl Mater Interfaces ; 14(47): 52715-52728, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394288

RESUMO

Silicon-containing Li-ion batteries have been the focus of many energy storage research efforts because of the promise of high energy density. Depending on the system, silicon generally demonstrates stable performance in half-cells, which is often attributed to the unlimited lithium supply from the lithium (Li) metal counter electrode. Here, the electrochemical performance of silicon with a high voltage NMC622 cathode was investigated in superconcentrated phosphonium-based ionic liquid (IL) electrolytes. As a matter of fact, there is very limited work and understanding of the full cell cycling of silicon in such a new class of electrolytes. The electrochemical behavior of silicon in the various IL electrolytes shows a gradual and steeper capacity decay, compared to what we previously reported in half-cells. This behavior is linked to a different evolution of the silicon morphology upon cycling, and the characterization of cycled electrodes points toward mechanical reasons, complete disconnection of part of the electrode, or internal mechanical stress, due to silicon and Li metal volume variation upon cycling, to explain the progressive capacity fading in full cell configuration. An extremely stable solid electrolyte interphase (SEI) in the full Li-ion cells can be seen from a combination of qualitative and quantitative information from transmission electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and magic angle spinning nuclear magnetic resonance. Our findings provide a new perspective to full cell interpretation regarding capacity fading, which is oftentimes linked almost exclusively to the loss of Li inventory but also more broadly, and provide new insights into the impact of the evolution of silicon morphology on the electrochemical behavior.

3.
ACS Appl Mater Interfaces ; 13(24): 28281-28294, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114808

RESUMO

The latest advances in the stabilization of Li/Na metal battery and Li-ion battery cycling have highlighted the importance of electrode/electrolyte interface [solid electrolyte interphase (SEI)] and its direct link to cycling behavior. To understand the structure and properties of the SEI, we used combined experimental and computational studies to unveil how the ionic liquid (IL) cation nature and salt concentration impact the silicon/IL electrolyte interfacial structure and the formed SEI. The nature of the IL cation is found to be important to control the electrolyte reductive decomposition that influences the SEI composition and properties and the reversibility of the Li-Si alloying process. Also, increasing the Li salt concentration changes the interface structure for a favorable and less resistive SEI. The most promising interface for the Si-based battery was found to be in P1222FSI with 3.2 m LiFSI, which leads to an optimal SEI after 100 cycles in which LiF and trapped LiFSI are the only distinguishable lithiated and fluorinated products detected. This study shows a clear link between the nanostructure of the IL electrolyte near the electrode surface, the resulting SEI, and the Si negative electrode cycling performance. More importantly, this work will aid the rational design of Si-based Li-ion batteries using IL electrolytes in an area that has so far been neglected, reinforcing the benefits of superconcentrated electrolyte systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA