Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35224642

RESUMO

The gram-negative bacterium, Legionella pneumophila is known to manipulate the host cellular functions. L. pneumophila secretes bacterial proteins called Legionella effectors into the host cytosol that are necessary for these manipulations. The Legionella effector Lpg1137 was identified as a serine protease responsible for the degradation of syntaxin 17 (Stx17). However, how Lpg1137 specifically recognizes and degrades Stx17 remained unknown. Given that Stx17 is localized in the ER, mitochondria-associated membrane (MAM), and mitochondria, Lpg1137 likely distributes to these compartments to recognize Stx17. Here, we show that the C-terminal region of Lpg1137 binds to phosphatidic acid (PA), a MAM and mitochondria-enriched phospholipid, and that this binding is required for the correct intracellular distribution of Lpg1137. Two basic residues in the C-terminal region of Lpg1137 are required for PA binding and their mutation causes mislocalization of Lpg1137. This mutant also fails to degrade Stx17 while retaining protease activity. Taken together, our data reveal that Lpg1137 utilizes PA for its distribution to the membranous compartments in which Stx17 is localized.


Assuntos
Legionella pneumophila , Legionella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Legionella/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
2.
J Cell Sci ; 134(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704591

RESUMO

Mammalian syntaxin 17 (Stx17) has several roles in processes other than membrane fusion, including in mitochondrial division, autophagosome formation and lipid droplet expansion. In contrast to conventional syntaxins, Stx17 has a long C-terminal hydrophobic region with a hairpin-like structure flanked by a basic amino acid-enriched C-terminal tail. Although Stx17 is one of the six ancient SNAREs and is present in diverse eukaryotic organisms, it has been lost in multiple lineages during evolution. In the present study, we compared the localization and function of fly and nematode Stx17s expressed in HeLa cells with those of human Stx17. We found that fly Stx17 predominantly localizes to the cytosol and mediates autophagy, but not mitochondrial division. Nematode Stx17, on the other hand, is predominantly present in mitochondria and facilitates mitochondrial division, but is irrelevant to autophagy. These differences are likely due to different structures in the C-terminal tail. Non-participation of fly Stx17 and nematode Stx17 in mitochondrial division and autophagy, respectively, was demonstrated in individual organisms. Our results provide an insight into the evolution of Stx17 in metazoa. This article has an associated First Person interview with the first author of the paper.


Assuntos
Fusão de Membrana , Proteínas SNARE , Animais , Autofagia , Células HeLa , Humanos , Proteínas Qa-SNARE/genética
3.
PLoS Pathog ; 17(3): e1009437, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760868

RESUMO

Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/microbiologia , Complexo de Golgi/microbiologia , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/metabolismo , Transporte Proteico/fisiologia , Vacúolos/metabolismo
4.
EMBO J ; 37(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30237312

RESUMO

PGAM5, a mitochondrial protein phosphatase that is genetically and biochemically linked to PINK1, facilitates mitochondrial division by dephosphorylating the mitochondrial fission factor Drp1. At the onset of mitophagy, PGAM5 is cleaved by PARL, a rhomboid protease that degrades PINK1 in healthy cells, and the cleaved form facilitates the engulfment of damaged mitochondria by autophagosomes by dephosphorylating the mitophagy receptor FUNDC1. Here, we show that the function and localization of PGAM5 are regulated by syntaxin 17 (Stx17), a mitochondria-associated membrane/mitochondria protein implicated in mitochondrial dynamics in fed cells and autophagy in starved cells. In healthy cells, loss of Stx17 causes PGAM5 aggregation within mitochondria and thereby failure of the dephosphorylation of Drp1, leading to mitochondrial elongation. In Parkin-mediated mitophagy, Stx17 is prerequisite for PGAM5 to interact with FUNDC1. Our results reveal that the Stx17-PGAM5 axis plays pivotal roles in mitochondrial division and PINK1/Parkin-mediated mitophagy.


Assuntos
Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais , Autofagossomos/metabolismo , Dinaminas , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/genética , Fosfoproteínas Fosfatases/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteólise , Proteínas Qa-SNARE/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
EMBO Rep ; 19(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925525

RESUMO

In fed cells, syntaxin 17 (Stx17) is associated with microtubules at the endoplasmic reticulum-mitochondria interface and promotes mitochondrial fission by determining the localization and function of the mitochondrial fission factor Drp1. Upon starvation, Stx17 dissociates from microtubules and Drp1, and binds to Atg14L, a subunit of the phosphatidylinositol 3-kinase complex, to facilitate phosphatidylinositol 3-phosphate production and thereby autophagosome formation, but the mechanism underlying this phenomenon remains unknown. Here we identify MAP1B-LC1 (microtubule-associated protein 1B-light chain 1) as a critical regulator of Stx17 function. Depletion of MAP1B-LC1 causes Stx17-dependent autophagosome accumulation even under nutrient-rich conditions, whereas its overexpression blocks starvation-induced autophagosome formation. MAP1B-LC1 links microtubules and Stx17 in fed cells, and starvation causes the dephosphorylation of MAP1B-LC1 at Thr217, allowing Stx17 to dissociate from MAP1B-LC1 and bind to Atg14L. Our results reveal the mechanism by which Stx17 changes its binding partners in response to nutrient status.


Assuntos
Autofagossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Qa-SNARE/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Tubulina (Proteína)/metabolismo
6.
J Lipid Res ; 59(5): 805-819, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549094

RESUMO

Lipid droplets (LDs) are ubiquitous organelles that contain neutral lipids and are surrounded by a phospholipid monolayer. How proteins specifically localize to the phospholipid monolayer of the LD surface has been a matter of extensive investigations. In the present study, we show that syntaxin 17 (Stx17), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein whose expression in the liver is regulated by diet, participates in LD biogenesis by regulating the distribution of acyl-CoA synthetase (ACSL)3, a key enzyme for LD biogenesis that redistributes from the endoplasmic reticulum (ER) to LDs during LD formation. Stx17 interacts with ACSL3, but not with LD formation-unrelated ACSL1 or ACSL4, through its SNARE domain. The interaction occurs at the ER-mitochondria interface and depends on the active site occupancy of ACSL3. Depletion of Stx17 impairs ACSL3 redistribution to nascent LDs. The defect in LD maturation due to Stx17 knockdown can be compensated for by ACSL3 overexpression, suggesting that Stx17 increases the efficiency of ACSL3 redistribution to LDs. Moreover, we show that the interaction between Stx17 and ACSL3 during LD maturation may be regulated by synaptosomal-associated protein of 23 kDa.


Assuntos
Coenzima A Ligases/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas Qa-SNARE/metabolismo , Células 3T3-L1 , Animais , Células Cultivadas , Feminino , Células HEK293 , Células Hep G2 , Humanos , Camundongos
7.
J Cell Sci ; 128(15): 2781-94, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101353

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide-sensitive factor (NSF) and its attachment protein, α-SNAP (encoded by NAPA), catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of fusion events. γ-SNAP (encoded by NAPG) is a SNAP isoform, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates the endosomal trafficking of epidermal growth factor (EGF) receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry analyses revealed that γ-SNAP interacts with a limited range of SNAREs, including endosomal ones. γ-SNAP, as well as α-SNAP, mediated the disassembly of endosomal syntaxin-7-containing SNARE complexes. Overexpression and small interfering (si)RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in a limited range of organelles - including endosomes - and their trafficking pathways.


Assuntos
Endocitose/fisiologia , Receptores ErbB/metabolismo , Transporte Proteico/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Células Hep G2 , Humanos , Fusão de Membrana/fisiologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Nature ; 477(7362): 103-6, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21822290

RESUMO

The intracellular pathogen Legionella pneumophila modulates the activity of host GTPases to direct the transport and assembly of the membrane-bound compartment in which it resides. In vitro studies have indicated that the Legionella protein DrrA post-translationally modifies the GTPase Rab1 by a process called AMPylation. Here we used mass spectrometry to investigate post-translational modifications to Rab1 that occur during infection of host cells by Legionella. Consistent with in vitro studies, DrrA-mediated AMPylation of a conserved tyrosine residue in the switch II region of Rab1 was detected during infection. In addition, a modification to an adjacent serine residue in Rab1 was discovered, which was independent of DrrA. The Legionella effector protein AnkX was required for this modification. Biochemical studies determined that AnkX directly mediates the covalent attachment of a phosphocholine moiety to Rab1. This phosphocholine transferase activity used CDP-choline as a substrate and required a conserved histidine residue located in the FIC domain of the AnkX protein. During infection, AnkX modified both Rab1 and Rab35, which explains how this protein modulates membrane transport through both the endocytic and exocytic pathways of the host cell. Thus, phosphocholination of Rab GTPases represents a mechanism by which bacterial FIC-domain-containing proteins can alter host-cell functions.


Assuntos
Proteínas de Bactérias/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Legionella pneumophila/enzimologia , Doença dos Legionários/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Chlorocebus aethiops , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Doença dos Legionários/fisiopatologia , Espectrometria de Massas , Processamento de Proteína Pós-Traducional
9.
Adv Exp Med Biol ; 997: 33-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815520

RESUMO

Mitochondria are powerhouses and central to metabolism in cells. They are highly dynamic organelles that continuously fuse, divide, and move along the cytoskeleton to form the mitochondrial network. The fusion and fission are catalyzed by four dynamin-related GTPases in mammals that are controlled by a variety of protein-protein interactions and posttranslational modifications. Mitochondrial dynamics and metabolism are linked and regulate each other. Starvation induces mitochondrial elongation, which enables the mitochondria to produce energy more efficiently and to escape from autophagic degradation. Damaged portions of mitochondria are removed from the healthy parts by division, and subsequently degraded via a specific mode of autophagy termed mitophagy. Recent studies shed light on the contribution of the endoplasmic reticulum to mitochondrial dynamics and the cooperation of the two organelles for the progression of autophagy including mitophagy. A subdomain of the endoplasmic reticulum apposed to mitochondria is called the mitochondria-associated membrane (MAM), which comprises a unique set of proteins that interact with mitochondrial proteins. Here we review our current understanding of the molecular mechanisms of mitochondrial dynamics and mitochondria-related processes in the context of the interaction with the endoplasmic reticulum.


Assuntos
Autofagia , Retículo Endoplasmático/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/patologia , Transdução de Sinais , Animais , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Humanos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia
10.
PLoS Pathog ; 10(7): e1004222, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992562

RESUMO

The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.


Assuntos
Proteínas de Bactérias/imunologia , Membrana Celular/imunologia , Retículo Endoplasmático/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Legionella pneumophila , Doença dos Legionários/imunologia , Fatores de Virulência/imunologia , Animais , Proteínas de Bactérias/genética , Membrana Celular/genética , Membrana Celular/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/microbiologia , Retículo Endoplasmático/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/genética , Legionella pneumophila/imunologia , Legionella pneumophila/patogenicidade , Doença dos Legionários/genética , Doença dos Legionários/patologia , Camundongos , Fatores de Virulência/genética , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/imunologia
11.
J Biol Chem ; 289(35): 24304-13, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25008318

RESUMO

The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.


Assuntos
Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Selenoproteínas/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Selenoproteínas/química
12.
J Cell Sci ; 125(Pt 23): 5658-66, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23077182

RESUMO

The SNARE protein syntaxin 5 exists as long (42 kDa) and short (35 kDa) isoforms. The short form is principally localized in the Golgi complex, whereas the long form resides not only in the Golgi but also in the endoplasmic reticulum (ER). Although the Golgi-localized short form has been extensively investigated, little is known about the long form. In the present study, we demonstrate that the long form of syntaxin 5 functions to shape the ER. We found that overexpression of the long form of syntaxin 5 induces rearrangement and co-alignment of the ER membrane with microtubules, the pattern of which is quite similar to that observed in cells overexpressing CLIMP-63, a linker between the ER membrane and microtubules. The ability of syntaxin 5 to induce ER-microtubule rearrangement is not related to its SNARE function, but correlates with its binding affinities for CLIMP-63, and CLIMP-63 is essential for the induction of this rearrangement. Microtubule co-sedimentation assays demonstrated that the long form of syntaxin 5 has a substantial microtubule-binding activity. These results suggest that the long form of syntaxin 5 contributes to the regulation of ER structure by interacting with both CLIMP-63 and microtubules. Indeed, depletion of syntaxin 5 caused the spreading of the ER to the cell periphery, similar to the phenotype observed in cells treated with the microtubule-depolymerizing reagent nocodazole. Our results disclose a previously undescribed function of the long form of syntaxin 5 that is not related to its function as a SNARE.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Qa-SNARE/metabolismo , Animais , Células COS , Linhagem Celular , Complexo de Golgi/metabolismo , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Interferência de RNA
13.
Elife ; 122024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771316

RESUMO

Rab GTPases are representative targets of manipulation by intracellular bacterial pathogens for hijacking membrane trafficking. Legionella pneumophila recruits many Rab GTPases to its vacuole and exploits their activities. Here, we found that infection-associated regulation of Rab10 dynamics involves ubiquitin signaling cascades mediated by the SidE and SidC families of Legionella ubiquitin ligases. Phosphoribosyl-ubiquitination of Rab10 catalyzed by the SidE ligases is crucial for its recruitment to the bacterial vacuole. SdcB, the previously uncharacterized SidC-family effector, resides on the vacuole and contributes to retention of Rab10 at the late stages of infection. We further identified MavC as a negative regulator of SdcB. By the transglutaminase activity, MavC crosslinks ubiquitin to SdcB and suppresses its function, resulting in elimination of Rab10 from the vacuole. These results demonstrate that the orchestrated actions of many L. pneumophila effectors fine-tune the dynamics of Rab10 during infection.


Assuntos
Proteínas de Bactérias , Legionella pneumophila , Vacúolos , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Vacúolos/metabolismo , Vacúolos/microbiologia , Interações Hospedeiro-Patógeno , Ubiquitinação , Animais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
14.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38765994

RESUMO

Upon entry into host cells, the facultative intracellular bacterium Legionella pneumophila ( L.p .) uses its type IV secretion system, Dot/Icm, to secrete ~330 bacterial effector proteins into the host cell. Some of these effectors hijack endoplasmic reticulum (ER)-derived vesicles to form the Legionella -containing vacuole (LCV). Despite extensive investigation over decades, the fundamental question persists: Is the LCV membrane distinct from or contiguous with the host ER network? Here, we employ advanced photobleaching techniques, revealing a temporal acquisition of both smooth and rough ER (sER and rER) markers on the LCV. In the early stages of infection, the sER intimately associates with the LCV. Remarkably, as the infection progresses, the LCV evolves into a distinct niche comprising an rER membrane that is independent of the host ER network. We discover that the L.p. effector LidA binds to and recruits two host proteins of the Rab superfamily, Rab10, and Rab4, that play significant roles in acquiring sER and rER membranes, respectively. Additionally, we identify the pivotal role of a host ER-resident protein, BAP31, in orchestrating the transition from sER to rER. While previously recognized for shuttling between sER and rER, we demonstrate BAP31's role as a Rab effector, mediating communication between these ER sub-compartments. Furthermore, using genomic deletion strains, we uncover a novel L.p. effector, Lpg1152, essential for recruiting BAP31 to the LCV and facilitating its transition from sER to rER. Depletion of BAP31 or infection with an isogenic L.p. strain lacking Lpg1152 results in a growth defect. Collectively, our findings illuminate the intricate interplay between molecular players from both host and pathogen, elucidating how L.p. orchestrates the transformation of its residing vacuole membrane from a host-associated sER to a distinct rER membrane that is not contiguous with the host ER network.

15.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38353696

RESUMO

The microtubule-associated protein MAP1B has been implicated in axonal growth and brain development. We found that MAP1B is highly expressed in the most aggressive and deadliest breast cancer subtype, triple-negative breast cancer (TNBC), but not in other subtypes. Expression of MAP1B was found to be highly correlated with poor prognosis. Depletion of MAP1B in TNBC cells impairs cell migration and invasion concomitant with a defect in tumorigenesis. We found that MAP1B interacts with key components for invadopodia formation, cortactin, and Tks5, the latter of which is a PtdIns(3,4)P2-binding and scaffold protein that localizes to invadopodia. We also found that Tks5 associates with microtubules and supports the association between MAP1B and α-tubulin. In accordance with their interaction, depletion of MAP1B leads to Tks5 destabilization, leading to its degradation via the autophagic pathway. Collectively, these findings suggest that MAP1B is a convergence point of the cytoskeleton to promote malignancy in TNBC and thereby a potential diagnostic and therapeutic target for TNBC.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Cortactina , Proteínas Associadas aos Microtúbulos , Neoplasias de Mama Triplo Negativas , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Cortactina/genética , Proteínas Associadas aos Microtúbulos/genética , Neoplasias de Mama Triplo Negativas/genética , Células MDA-MB-231 , Proteínas Adaptadoras de Transporte Vesicular/genética , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Feminino , Animais , Camundongos , Camundongos Endogâmicos BALB C , Podossomos/metabolismo , Tubulina (Proteína)/metabolismo
16.
Traffic ; 11(5): 587-600, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20163564

RESUMO

Biogenesis of a specialized organelle that supports intracellular replication of Legionella pneumophila involves the fusion of secretory vesicles exiting the endoplasmic reticulum (ER) with phagosomes containing this bacterial pathogen. Here, we investigated host plasma membrane SNARE proteins to determine whether they play a role in trafficking of vacuoles containing L. pneumophila. Depletion of plasma membrane syntaxins by RNA interference resulted in delayed acquisition of the resident ER protein calnexin and enhanced retention of Rab1 on phagosomes containing virulent L. pneumophila, suggesting that these SNARE proteins are involved in vacuole biogenesis. Plasma membrane-localized SNARE proteins syntaxin 2, syntaxin 3, syntaxin 4 and SNAP23 localized to vacuoles containing L. pneumophila. The ER-localized SNARE protein Sec22b was found to interact with plasma membrane SNAREs on vacuoles containing virulent L. pneumophila, but not on vacuoles containing avirulent mutants of L. pneumophila. The addition of alpha-SNAP and N-ethylmaleimide-sensitive factor (NSF) to the plasma membrane SNARE complexes formed by virulent L. pneumophila resulted in the dissociation of Sec22b, indicating functional pairing between these SNAREs. Thus, L. pneumophila stimulates the non-canonical pairing of plasma membrane t-SNAREs with the v-SNARE Sec22b to promote fusion of the phagosome with ER-derived vesicles. The mechanism by which L. pneumophila promotes pairing of plasma membrane syntaxins and Sec22b could provide unique insight into how the secretory vesicles could provide an additional membrane reserve subverted during phagosome maturation.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Qa-SNARE/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Calnexina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Etilmaleimida/metabolismo , Legionella pneumophila/metabolismo , Microssomos/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Organelas/metabolismo , Fagossomos/metabolismo , Fagossomos/microbiologia , Transporte Proteico , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
17.
STAR Protoc ; 2(2): 100410, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870219

RESUMO

The intracellular bacterial pathogen Legionella pneumophila exploits host cellular systems using approximately 300 effector proteins to establish a replicative niche known as the Legionella-containing vacuole (LCV). During infection, both host and bacterial proteins interactively function on the LCVs. Here, we describe a detailed step-by-step protocol to visualize proteins associated with LCVs in host cells. This protocol can aid in analyzing whether a protein of interest influences the subcellular localization of LCV-associated proteins during infection. For complete details on the use and execution of this protocol, please refer to Kitao et al. (2020).


Assuntos
Proteínas de Bactérias/análise , Técnicas Bacteriológicas/métodos , Imunofluorescência/métodos , Legionella pneumophila/química , Vacúolos , Proteínas de Bactérias/química , Técnicas de Cultura de Células , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Transfecção , Vacúolos/química , Vacúolos/microbiologia
18.
J Cell Biol ; 220(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33156328

RESUMO

In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP-OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER-Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP-OSBP complex. As in the case of perturbation of lipid transfer complexes at ER-Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network-derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport-defective mutant, but not of cholesterol sensing-defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER-Golgi MCSs, depending on the ER cholesterol.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Rede trans-Golgi/metabolismo , Colesterol/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Transporte Proteico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
19.
Cell Rep ; 32(10): 108107, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905772

RESUMO

The intracellular bacterial pathogen Legionella pneumophila uses many effector proteins delivered by the bacterial type IV secretion system (T4SS) to hijack the early secretory pathway to establish its replicative niche, known as the Legionella-containing vacuole (LCV). On LCV biogenesis, the endoplasmic reticulum (ER) vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptors (v-SNARE) Sec22b is recruited to the bacterial phagosome and forms non-canonical pairings with target membrane SNAREs (t-SNAREs) from the plasma membrane. Here, we identify a Legionella deubiquitinase (DUB), LotB, that can modulate the early secretory pathway by interacting with coatomer protein complex I (COPI) vesicles when ectopically expressed. We show that Sec22b is ubiquitinated upon L. pneumophila infection in a T4SS-dependent manner and that, subsequently, LotB deconjugates K63-linked ubiquitins from Sec22b. The DUB activity of LotB stimulates dissociation of the t-SNARE syntaxin 3 (Stx3) from Sec22b, which resides on the LCV. Our study highlights a bacterial strategy manipulating the dynamics of infection-induced SNARE pairing using a bacterial DUB.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Legionella pneumophila/patogenicidade , Proteínas de Bactérias/metabolismo , Transfecção
20.
Genes Cells ; 13(8): 905-14, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18782227

RESUMO

ZW10 interacts with dynamitin, a subunit of the dynein accessory complex dynactin, and functions in termination of the spindle checkpoint during mitosis and in membrane transport between the endoplasmic reticulum (ER) and Golgi apparatus during interphase. Its associations with kinetochores and ER membranes are mediated by Zwint-1 and RINT-1, respectively. A previous yeast two-hybrid study showed that the C-terminal region of ZW10 interacts with dynamitin, and part of this region has been used as an inhibitor of ZW10 function. In the present study, we reinvestigated the interaction between ZW10 and dynamitin, and showed that the N-terminal region of ZW10 is the major binding site for dynamitin and, like full-length ZW10, could potentially move along microtubules to the centrosomal area in a dynein-dynactin-dependent manner. Competitive binding experiments demonstrated that dynamitin and RINT-1 occupy the same N-terminal region of ZW10 in a mutually exclusive fashion. Consistent with this, over-expression of RINT-1 interfered with the dynein-dynactin-mediated movement of ZW10 to the centrosomal area. Given that the N-terminal region of ZW10 also interacts with Zwint-1, this region may be important for switching partners; one partner is a determinant for localization (kinetochore and ER) and the other links ZW10 to dynein function.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Linhagem Celular , Complexo Dinactina , Retículo Endoplasmático/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA