Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Acta Biomater ; 176: 445-457, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190928

RESUMO

The incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of interest for bone regeneration purposes. In the present work, we have designed a set of bioactive mesoporous glasses SiO2-CaO-P2O5-CoO (Co-MBGs) with different amounts of cobalt. The physicochemical changes introduced by the Co2+ ion, the in vitro effects of Co-MBGs on preosteoblasts and endothelial cells and their in vivo behaviour using them as bone grafts in a sheep model were studied. The results show that Co2+ ions neither destroy mesoporous ordering nor inhibit in vitro bioactive behaviour, exerting a dual role as network former and modifier for CoO concentrations above 3 % mol. On the other hand, the activity of Co-MBGs on MC3T3-E1 preosteoblasts and HUVEC vascular endothelial cells is dependent on the concentration of CoO present in the glass. For low Co-MBGs concentrations (1mg/ml) cell viability is not affected, while the expression of osteogenic (ALP, RUNX2 and OC) and angiogenic (VEGF) genes is stimulated. For Co-MBGs concentration of 5 mg/ml, cell viability decreases as a function of the CoO content. In vivo studies show that the incorporation of Co2+ ions to the MBGs improves the bone regeneration activity of these materials, despite the deleterious effect that this ion has on bone-forming cells for any of the Co-MBG compositions studied. This contradictory effect is explained by the marked increase in angiogenesis that takes place inside the bone defect, leading to an angiogenesis-osteogenesis coupling that compensates for the partial decrease in osteoblast cells. STATEMENT OF SIGNIFICANCE: The development of new bone grafts implies to address the need for osteogenesis-angiogenesis coupling that allows bone regeneration with viable tissue in the long term. In this sense the incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of great interest in this field. Due to the potential cytotoxic effect of cobalt ions, there is an important controversy regarding the suitability of their incorporation in bone grafts. In this work, we address this controversy after the implantation of cobalt-doped mesoporous bioactive glasses in a sheep model. The incorporation of cobalt ions in bioactive glasses improves the bone regeneration ability of these bone grafts, due to enhancement of the angiogenesis-osteogenesis coupling.


Assuntos
Células Endoteliais , Osteogênese , Animais , Ovinos , Cobalto/farmacologia , Cobalto/química , Dióxido de Silício , Íons , Vidro/química
2.
Acta Biomater ; 151: 501-511, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35933104

RESUMO

The osteogenic capability of mesoporous bioactive nanoparticles (MBNPs) in the SiO2CaO system has been assessed in vivo using an osteoporotic rabbit model. MBNPs have been prepared using a double template method, resulting in spherical nanoparticles with a porous core-shell structure that has a high surface area and the ability to incorporate the anti-osteoporotic drug ipriflavone. In vitro expression of the pro-inflammatory genes NF-κB1, IL-6, TNF-α, P38 and NOS2 in RAW-264.7 macrophages, indicates that these nanoparticles do not show adverse inflammatory effects. An injectable system has been prepared by suspending MBNPs in a hyaluronic acid-based hydrogel, which has been injected intraosseously into cavitary bone defects in osteoporotic rabbits. The histological analyses evidenced that MBNPs promote bone regeneration with a moderate inflammatory response. The incorporation of ipriflavone into these nanoparticles resulted in a higher presence of osteoblasts and enhanced angiogenesis at the defect site, but without showing significant differences in terms of new bone formation. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glass nanoparticles have emerged as one of the most interesting materials in the field of bone regeneration therapies. For the first time, injectable mesoporous bioactive nanoparticles have been tested in vivo using an osteoporotic animal model. Our findings evidence that MBG nanoparticles can be loaded with an antiosteoporotic drug, ipriflavone, and incorporated in hyaluronic acid to make up an injectable hydrogel. The incorporation of MBG nanoparticles promotes bone regeneration even under osteoporotic conditions, whereas the presence of IP enhances angiogenesis as well as the presence of osteoblast cells lining in the newly formed bone. The injectable device presented in this work opens new possibilities for the intraosseous treatment of osteoporotic bone using minimally invasive surgery.


Assuntos
Nanopartículas , Osteoporose , Animais , Regeneração Óssea , Osso e Ossos , Vidro/química , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Interleucina-6 , Nanopartículas/química , Nanopartículas/uso terapêutico , Osteogênese , Osteoporose/tratamento farmacológico , Porosidade , Coelhos , Alicerces Teciduais/química , Fator de Necrose Tumoral alfa/farmacologia
3.
Int Immunopharmacol ; 94: 107457, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33752172

RESUMO

The use of nanoparticles for intracellular drug delivery could reduce the toxicity and side effects of the drug but, the uptake of these nanocarriers could induce adverse effects on cells and tissues after their incorporation. Macrophages play a central role in host defense and are responsible for in vivo nanoparticle trafficking. Assessment of their defense capacity against pathogenic micro-organisms after nanoparticle uptake, is necessary to prevent infections associated with nanoparticle therapies. In this study, the effects of hollow mesoporous SiO2-CaO nanospheres labeled with fluorescein isothiocyanate (FITC-NanoMBGs) on the function of peritoneal macrophages was assessed by measuring their ability to phagocytize Candidaalbicans expressing a red fluorescent protein. Two macrophage/fungus ratios (MOI1 and MOI5) were used and two experimental strategies were carried out: a) pretreatment of macrophages with FITC-NanoMBGs and subsequent fungal infection; b) competition assays after simultaneous addition of fungus and nanospheres. Macrophage pro-inflammatory phenotype markers (CD80 expression and interleukin 6 secretion) were also evaluated. Significant decreases of CD80+ macrophage percentage and interleukin 6 secretion were observed after 30 min, indicating that the simultaneous incorporation of NanoMBG and fungus favors the macrophage non-inflammatory phenotype. The present study evidences that the uptake of these nanospheres in all the studied conditions does not alter the macrophage function. Moreover, intracellular FITC-NanoMBGs induce a transitory increase of the fungal phagocytosis by macrophages at MOI 1 and after a short time of interaction. In the competition assays, as the intracellular fungus quantity increased, the intracellular FITC-NanoMBG content decreased in a MOI- and time-dependent manner. These results have confirmed that macrophages clearly distinguish between inert material and the live yeast in a dynamic intracellular incorporation. Furthermore, macrophage phagocytosis is a critical determinant to know their functional state and a valuable parameter to study the nanomaterial / macrophages / Candida albicans interface.


Assuntos
Compostos de Cálcio/administração & dosagem , Candida albicans , Macrófagos Peritoneais/efeitos dos fármacos , Nanosferas/administração & dosagem , Óxidos/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Células Cultivadas , Macrófagos Peritoneais/fisiologia , Camundongos Endogâmicos C57BL , Porosidade
4.
Colloids Surf B Biointerfaces ; 208: 112110, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34555654

RESUMO

Mesoporous bioactive glasses (MBGs) are bioceramics designed to induce bone tissue regeneration and very useful materials with the ability to act as drug delivery systems. MBGs can be implanted in contact with bone tissue in different ways, as particulate material, in 3D scaffolds or as nanospheres. In this work, we assessed the effects of particles of mesoporous bioactive glass MBG-75S and mesoporous nanospheres NanoMBG-75S on RAW 264.7 and J774A.1 macrophages, which present different sensitivity and are considered as ideal models for the study of innate immune response. After evaluating several cellular parameters (morphology, size, complexity, proliferation, cell cycle and intracellular content of reactive oxygen species), the action of MBG-75S particles and NanoMBG-75S on the polarization of these macrophages towards the pro-inflammatory (M1) or reparative (M2) phenotype was determined by the expression of specific M1 (CD80) and M2 (CD206, CD163) markers. We previously measured the adsorption of albumin and fibrinogen on MBG-75S particles and the production of pro-inflammatory cytokines as TNF-α and IL-6 by macrophages in response to these particles. This comparative study demonstrates that particles of mesoporous bioactive glass MBG-75S and mesoporous nanospheres NanoMBG-75S allow the appropriated development and function of RAW 264.7 and J774A.1 macrophages and do not induce polarization towards the M1 pro-inflammatory phenotype. Therefore, considering that these mesoporous biomaterials offer the possibility of loading drugs into their pores, the results obtained indicate their high potential for use as drug-delivery systems in bone repair and osteoporosis treatments without triggering an adverse inflammatory response.


Assuntos
Vidro , Nanosferas , Proliferação de Células , Macrófagos , Porosidade , Alicerces Teciduais
5.
AMIA Annu Symp Proc ; 2021: 526-535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35308959

RESUMO

We develop various AI models to predict hospitalization on a large (over 110k) cohort of COVID-19 positive-tested US patients, sourced from March 2020 to February 2021. Models range from Random Forest to Neural Network (NN) and Time Convolutional NN, where combination of the data modalities (tabular and time dependent) are performed at different stages (early vs. model fusion). Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and F1-score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class. Performances do not significantly drop even when selected lists of features are removed to study model adaptability to different scenarios. However, a systematic study of the SHAP feature importance values for the developed models in the different scenarios shows a large variability across models and use cases. This calls for even more complete studies on several explainability methods before their adoption in high-stakes scenarios.


Assuntos
COVID-19 , COVID-19/epidemiologia , Estudos de Coortes , Hospitalização , Humanos , Redes Neurais de Computação
6.
Acta Biomater ; 101: 544-553, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678741

RESUMO

Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture tests. Those scaffolds made of nanocrystalline SiHA were colonized by fibrous tissue, promoted inflammatory response and fostered osteoclast recruitment. These observations discard nanocystalline SiHA as a suitable material for bone regeneration purposes. On the contrary, those scaffolds made of crystalline SiHA and decorated with VEGF exhibited bone regeneration properties, with high ossification degree, thicker trabeculae and higher presence of osteoblasts and blood vessels. Considering these results, macroporous scaffolds made of SiHA and decorated with VEGF are suitable bone grafts for regeneration purposes, even in adverse pathological scenarios such as osteoporosis. STATEMENT OF SIGNIFICANCE: For the first time, the in vivo behavior of scaffolds made of silicon substituted hydroxyapatites (SiHA) has been evaluated under osteoporosis conditions. In order to optimize the bone regeneration properties of these bioceramics, 3D macroporous scaffolds have been manufactured by robocasting and implanted in osteoporotic sheep. Our experimental design shed light on the important issue of the biological response of nano-sized bioceramics vs highly crystalline bioceramics, as well as on the importance of coupling vascularization and bone growth processes by decorating SiHA scaffolds with vascular endothelial growth factor.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Durapatita/farmacologia , Osteoporose/patologia , Silício/farmacologia , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adsorção , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoporose/diagnóstico por imagem , Porosidade , Ovinos , Suínos , Tomografia Computadorizada por Raios X
7.
Acta Biomater ; 83: 456-466, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445158

RESUMO

The osteogenic and angiogenic responses to metal macroporous scaffolds coated with silicon substituted hydroxyapatite (SiHA) and decorated with vascular endothelial growth factor (VEGF) have been evaluated in vitro and in vivo. Ti6Al4V-ELI scaffolds were prepared by electron beam melting and subsequently coated with Ca10(PO4)5.6(SiO4)0.4(OH)1.6 following a dip coating method. In vitro studies demonstrated that SiHA stimulates the proliferation of MC3T3-E1 pre-osteoblastic cells, whereas the adsorption of VEGF stimulates the proliferation of EC2 mature endothelial cells. In vivo studies were carried out in an osteoporotic sheep model, evidencing that only the simultaneous presence of both components led to a significant increase of new tissue formation in osteoporotic bone. STATEMENT OF SIGNIFICANCE: Reconstruction of bones after severe trauma or tumors extirpation is one of the most challenging tasks in the field of orthopedic surgery. This scenario is even more complicated in the case of osteoporotic patients, since their bone regeneration capability is decreased. In this work we present a porous implant that promotes bone regeneration even in osteoporotic bone. By coating the implant with osteogenic bioceramics such as silicon substituted hydroxyapatite and subsequent adsorption of vascular endothelial growth factor, these implants stimulate the bone ingrowth when they are implanted in osteoporotic sheep.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Durapatita , Osteoporose , Silício , Titânio , Fator A de Crescimento do Endotélio Vascular , Ligas , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Ovinos , Silício/química , Silício/farmacologia , Suínos , Titânio/química , Titânio/farmacologia , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
Acta Biomater ; 90: 393-402, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30965142

RESUMO

Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and ɛ-polycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2) and osteoclasts derived from RAW 264.7 macrophages. In vivo studies were carried out by implantation into cavitary defects drilled in osteoporotic sheep. The scaffolds evidenced excellent bone regeneration properties, promoting new bone formation at both the peripheral and the inner parts of the scaffolds, thick trabeculae, high vascularization and high presence of osteoblasts and osteoclasts. In order to evaluate the effects of the local release of an antiosteoporotic drug, 1% (%wt) of zoledronic acid was incorporated to the scaffolds. The scaffolds loaded with zoledronic acid induced apoptosis in Saos 2 cells, impeded osteoclast differentiation in a time dependent manner and inhibited bone healing, promoting an intense inflammatory response in osteoporotic sheep. STATEMENT OF SIGNIFICANCE: In addition to an increase in bone fragility and susceptibility to fracture, osteoporosis also hinders the clinical success of endosseous implants and grafting materials for the treatment of bone defects. For the first time, macroporous scaffolds made of mesoporous bioactive glass and ε-caprolactone have been evaluated in a sheep model that mimics the osteoporosis conditions in humans. These implants fostered bone regeneration, promoting new bone formation at both the peripheral and the inner parts of the scaffolds, showing thick trabeculae and a high vascularization degree. Our results indicate that macroporous structures containing highly bioactive mesoporous glasses could be excellent candidates for the regenerative treatment of bone defects in osteoporotic patients.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Vidro/química , Osteogênese/efeitos dos fármacos , Osteoporose , Poliésteres , Ácido Zoledrônico , Animais , Modelos Animais de Doenças , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Feminino , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Poliésteres/química , Poliésteres/farmacologia , Porosidade , Células RAW 264.7 , Ovinos , Ácido Zoledrônico/química , Ácido Zoledrônico/farmacocinética , Ácido Zoledrônico/farmacologia
9.
J Colloid Interface Sci ; 528: 309-320, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859456

RESUMO

A mesoporous bioactive glass (MBG) of molar composition 75SiO2-20CaO-5P2O5 (MBG-75S) has been synthetized as a potential bioceramic for bone regeneration purposes. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption studies and transmission electron microscopy (TEM) demonstrated that MBG-75S possess a highly ordered mesoporous structure with high surface area and porosity, which would explain the high ionic exchange rate (mainly calcium and silicon soluble species) with the surrounded media. MBG-75S showed high biocompatibility in contact with Saos-2 osteoblast-like cells. Concentrations up to 1 mg/ml did not lead to significant alterations on either morphology or cell cycle. Regarding the effects on osteoclasts, MBG-75S allowed the differentiation of RAW-264.7 macrophages into osteoclast-like cells but exhibiting a decreased resorptive activity. These results point out that MBG-75S does not inhibit osteoclastogenesis but reduces the osteoclast bone-resorbing capability. Finally, in vitro studies focused on the innate immune response, evidenced that MBG-75S allows the proliferation of macrophages without inducing their polarization towards the M1 pro-inflammatory phenotype. This in vitro behavior is indicative that MBG-75S would just induce the required innate immune response without further inflammatory complications under in vivo conditions. The overall behavior respect to osteoblasts, osteoclasts and macrophages, makes this MBG a very interesting candidate for bone grafting applications in osteoporotic patients.


Assuntos
Materiais Biocompatíveis/metabolismo , Cerâmica/metabolismo , Macrófagos/citologia , Osteoblastos/citologia , Osteoclastos/citologia , Animais , Apoptose , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Tamanho Celular , Humanos , Macrófagos/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Porosidade , Células RAW 264.7
10.
Acta Biomater ; 76: 333-343, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29966758

RESUMO

Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios. STATEMENT OF SIGNIFCANCE: Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.


Assuntos
Substitutos Ósseos , Diferenciação Celular/efeitos dos fármacos , Gálio , Vidro/química , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Linhagem Celular , Gálio/química , Gálio/farmacologia , Humanos , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia
11.
J Orthop Res ; 24(3): 454-60, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16450408

RESUMO

Biomaterial pieces with osteogenic properties, suitable for use in the treatment of bone defects, were synthesized. The materials, which avoid bone infections, are exclusively composed of gentamicin sulfate and bioactive SiO2-CaO-P2O5 sol-gel glass (synthesized previously), and were manufactured by means of uniaxial and isostatic pressure of the mixed components. After implanting the pieces into rabbit femur, we studied (1) antibiotic release, determining the concentration in proximal and distal bone, liver, kidney, and lung as a function of time, and (2) bone growth as a consequence of the glass reactivity in the biological environment. The results demonstrated that the implants are good carriers for local gentamicin release into the local osseous tissue, where they show excellent biocompatibility and bone integration. Moreover, these implants are able to promote bone growth during the resorption process.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis , Portadores de Fármacos , Gentamicinas/administração & dosagem , Procedimentos Ortopédicos/instrumentação , Animais , Antibacterianos/farmacocinética , Feminino , Fêmur/efeitos dos fármacos , Fêmur/patologia , Fêmur/fisiologia , Géis , Gentamicinas/farmacocinética , Vidro , Masculino , Modelos Animais , Procedimentos Ortopédicos/efeitos adversos , Procedimentos Ortopédicos/métodos , Osseointegração/efeitos dos fármacos , Osseointegração/fisiologia , Tamanho da Partícula , Coelhos , Distribuição Tecidual
12.
J Biomed Mater Res A ; 79(3): 533-43, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16788969

RESUMO

Implantable thermoseeds are synthesised from mixtures of a melt-derived glass with composition SiO(2) (40)-CaO(40)-Fe(2)O(3)(20) (mol%) and a sol-gel glass with composition SiO(2)(58)-P(2)O(5)(6)-CaO(36) (mol%). Structural, textural and magnetic properties of the samples are evaluated. In vitro bioactivity is assessed in order to determine the potential capability to bond to living bone. In spite of the low textural properties of the material, a bioactive behavior is observed as a result of the sol-gel glass content. Although the crystallization of the glass ceramic provides the magnetic phase, the presence of sol-gel glass modifies the magnetic properties, improving the heating power. For the first time, hyperthermia heating experiments as well as preliminary biocompatibility assays have been carried out for this kind of material. The ability to reach hyperthermic temperature range together with the bioactive behavior makes this biomaterial a very promising candidate for bone cancer treatment.


Assuntos
Neoplasias Ósseas/terapia , Cerâmica/química , Vidro/química , Adsorção , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cerâmica/farmacologia , Cerâmica/uso terapêutico , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Oxirredução , Transição de Fase , Temperatura , Difração de Raios X
13.
J Biomed Mater Res A ; 78(4): 762-71, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16739108

RESUMO

Three silicon-doped calcium phosphates (Si-CaPs) were synthesized by heating precipitated silicon-doped apatite via different thermal treatments. Temperatures of 700 degrees C, 900 degrees C, and 1100 degrees C led to an apatite-glass biphasic material, nanocrystalline Si-doped apatite (SiHA), and Si-doped apatite-alpha tricalcium phosphate biphasic material, respectively. Structure, microstructure, textural properties, and chemical differences were determined for the three bioceramics. Biocompatibility tests were carried out by seeding osteblast-like cells onto the three substrates. Si-CaP treated at 700 degrees C and 900 degrees C led to Ca decrease in the culture media, partially impeding the cell proliferation over them. However, the proliferation capability is restored when additional culture medium is added. Finally, cytotoxicity results indicated that cell damage is much lower in osteblast-like cells seeded onto SiHA and SiHA-alpha tricalcium phosphate samples than in plastic culture control.


Assuntos
Materiais Biocompatíveis , Fosfatos de Cálcio , Silício , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cristalização , Meios de Cultura , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Varredura , Difração de Raios X
14.
Acta Biomater ; 44: 73-84, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521495

RESUMO

UNLABELLED: Mesoporous bioactive glass-polycaprolactone (MBG-PCL) scaffolds have been prepared by robocasting, a layer by layer rapid prototyping method, by stacking of individual strati. Each stratus was independently analyzed during the cell culture tests with MC3T3-E1 preosteblast-like cells. The presence of MBG stimulates the colonization of the scaffolds by increasing the cell proliferation and differentiation. MBG-PCL composites not only enhanced pre-osteoblast functions but also allowed cell movement along its surface, reaching the upper stratus faster than in pure PCL scaffolds. The cells behavior on each individual stratus revealed that the scaffolds colonization depends on the chemical stimuli supplied by the MBG dissolution and surface changes associated to the apatite-like formation during the bioactive process. Finally, scanning electron and fluorescence microscopy revealed that the kinetic of cell migration strongly depends on the architectural features of the scaffolds, in such a way that layers interconnections are used as migration routes to reach the farther scaffolds locations from the initial cells source. STATEMENT OF SIGNIFICANCE: This manuscript provides new insights on cell behavior in bioceramic/polymer macroporous scaffolds prepared by rapid prototyping methods. The experiments proposed in this work have allowed the evaluation of cell behavior within the different levels of the scaffolds, i.e. from the initials source of cells towards the farther scaffold locations. We could demonstrate that the in vitro cell colonization is encouraged by the presence of a highly bioactive mesoporous glass (MBG). This bioceramic enhances the cell migration towards upper strati through the dissolution of chemical signals and the changes occurred on the scaffolds surface during the bioactive process. In addition the MBG promotes preosteblastic proliferation and differentiation respect to scaffolds made of pure polycaprolactone. Finally, this study reveals the significance of the architectural design to accelerate the cell colonization. These experiments put light on the factors that should be taken into account to accelerate the regeneration processes under in vivo conditions.


Assuntos
Materiais Biocompatíveis/farmacologia , Osteoblastos/citologia , Alicerces Teciduais/química , Adsorção , Animais , Líquidos Corporais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Vidro/química , Troca Iônica , L-Lactato Desidrogenase/metabolismo , Camundongos , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nitrogênio/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Poliésteres/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
15.
J Mater Chem B ; 4(11): 1951-1959, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263072

RESUMO

Silicon substituted and nanocrystalline hydroxyapatites have attracted the attention of many researchers due to their up-regulation in osteoblast cell metabolism and enhanced bioreactivity, respectively. On the other hand, the biomaterial success or failure depends ultimately on the immune response triggered after its implantation. Macrophages are the main components of the innate immune system with an important role in healing and tissue remodelling due to their remarkable functional plasticity, existing in a whole spectrum of functional populations with varying phenotypic features. The effects of nanocrystalline hydroxyapatite (nano-HA) and nanocrystalline silicon substituted hydroxyapatite (nano-SiHA) on the macrophage populations defined as pro-inflammatory (M1) and reparative (M2) phenotypes have been evaluated in the present study using RAW 264.7 cells and mouse peritoneal macrophages as in vitro models. M1 and M2 macrophage phenotypes were characterized by flow cytometry and confocal microscopy by the expression of CD80 and CD163, known as M1 and M2 markers, respectively. The polarization of primary macrophages towards the M1 or M2 phenotype was induced with the pro-inflammatory stimulus LPS or the anti-inflammatory stimulus IL-10, respectively, evaluating the biomaterial effects under these conditions. Our results show that both nano-HA and nano-SiHA favour the macrophage polarization towards an M2 reparative phenotype, decreasing M1 population and ensuring an appropriate response in the implantation site of these biomaterials designed for bone repair and bone tissue engineering.

16.
J Mater Chem B ; 3(18): 3810-3819, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262855

RESUMO

Mesoporous bioactive glasses (MBGs) in the SiO2-CaO-P2O5 system have been prepared using different non-ionic structure directing agents (SDA): Brij58, F68, P123 and F127. For the first time, the bioactive response of MBGs can be tailored with the kind of SDA incorporated. This is because, in addition to the textural properties, we can use the SDA to tailor the local atomic environment within the MBG struts. These features lead to differences in the in vitro bioactive behaviour of MBGs. Among the different SDAs used in this work, the triblock copolymer F68 leads to MBGs that exhibit the fastest bioactivity and the fastest differentiation induction from a pre-osteoblast to an osteoblast phenotype. These results are explained in terms of a highly ordered mesoporous structure, more free calcium cations acting as silica network modifiers and small mesopores that avoid the formation of CaP nuclei within pores, which could obstruct the ionic exchange with the surrounding fluids.

17.
Biomaterials ; 22(7): 701-8, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11246964

RESUMO

Gentamicin sulfate has been incorporated in composites prepared from a SiO2-CaO-P2O5 bioactive glass and polymethylmethacrylate. Data showed that these materials could be used as drug delivery system, keeping the bioactive behavior of the glass. The composites supply high doses of the antibiotic during the first hours when they are soaked in simulated body fluid (SBF). Thereafter, a slower drug release is produced, supplying 'maintenance' doses until the end of the experiment. The gentamicin release rate is related with the ionic Ca2+ and H3O+ exchange between composite and SBF. The porous structure of the composites allows the growth of hydroxycarbonate apatite on the surface and into the pores.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Vidro , Polimetil Metacrilato , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Líquidos Corporais , Cimentos Ósseos , Substitutos Ósseos , Preparações de Ação Retardada , Gentamicinas/administração & dosagem , Gentamicinas/farmacocinética , Humanos , Técnicas In Vitro , Teste de Materiais , Microscopia Eletrônica de Varredura , Osteomielite/prevenção & controle
18.
Biomaterials ; 23(10): 2151-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11962656

RESUMO

A novel biphasic material has been synthetised from a sol-gel-derived glass (Si-Ca-P) and a glass-ceramic obtained from a melt-derived glass (Si-Ca-Fe). Both components of such a biphasic mixture are bioactive, but with different kinetics for the growth of an apatite-like layer on the surface of these materials, needing only one day for the sol-gel-derived glass and one month for the glass-ceramic. The glass-ceramic shows magnetic properties. The biphasic material, obtained from a mixture 1:1 of these components, is bioactive, and its surface is coated after 15 days of soaking in SBF. The biphasic material also exhibited magnetic behaviour, useful for hyperthermia.


Assuntos
Materiais Biocompatíveis , Vidro , Magnetismo , Adsorção , Cálcio/química , Cerâmica/química , Concentração de Íons de Hidrogênio , Ferro , Cinética , Microscopia Eletrônica de Varredura , Fósforo , Silício , Fatores de Tempo , Difração de Raios X
19.
Biomaterials ; 25(13): 2629-35, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14751749

RESUMO

Cephalexin containing gypsum and apatite/gypsum cements have been synthesised. The presence of cephalexin into the cements does not alter neither the physico-chemical behaviour of the cements nor produce structural changes on them. These cements behave as drug delivery systems when soaked in simulated body fluid. The release of the drug is different depending on the composition. For gypsum cements, the cephalexin is quickly released, helped by a dissolution process of the matrix, whereas the drug release is more controlled by the hydroxyapatite presence in hydroxyapatite/gypsum samples. Apatite containing cements do not only show a different drug release process, also the paste viscosity is lower and a faster formation "in vitro" of an apatite-type layer on their surface is observed.


Assuntos
Antibacterianos/química , Cimentos Ósseos/química , Sulfato de Cálcio/química , Cefalexina/química , Antibacterianos/farmacocinética , Varredura Diferencial de Calorimetria , Cefalexina/farmacocinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
20.
Biomaterials ; 18(18): 1235-42, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9300558

RESUMO

Two composite systems composed of alpha-Al2O3/poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP)/ibuprofen or alpha-Al2O3/PMMA/co-vinyl pyrrolidone-methyl methacrylate/ibuprofen were prepared by free radical polymerization. These systems were characterized by spectroscopic techniques and thermogravimetric and differential thermal analyses. The hydration behaviour of composites with different hydrophilic characters was analysed after the immersion of the composites in buffered solution at pH 7.4 and 37 degrees C. The swelling of the composites depends strongly on the content of the hydrophilic component and is controlled by the presence of the ceramic component. The release of the anti-inflammatory drug, ibuprofen, from the composites in buffered solution was followed by UV spectroscopy and the results obtained indicated that the components of the composites influenced the rate of release of the drug, without the classical 'burst' effect observed frequently with hydrophilic systems.


Assuntos
Materiais Biocompatíveis , Ibuprofeno/administração & dosagem , Óxido de Alumínio , Anti-Inflamatórios/administração & dosagem , Soluções Tampão , Cerâmica , Preparações de Ação Retardada , Técnicas In Vitro , Teste de Materiais , Metilmetacrilatos , Microscopia Eletrônica de Varredura , Povidona , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA