Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 84: 117258, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001244

RESUMO

The thyrotropin receptor (TSH-R) regulates the thyroid gland and is normally activated by thyrotropin. In patients with Graves' disease, TSH-R is also stimulated by stimulatory TSH-R autoantibodies leading to hyperthyroidism. In this paper, we describe the discovery of SYD5115 (67), a novel small molecule TSH-R antagonist with nanomolar potency. SYD5115 also blocks stimulating antibody induced synthesis of the thyroid hormone thyroxine (T4) in vivo, after a single oral dose. During optimization, several issues had to be addressed such as the low metabolic stability and the potential mutagenicity of our first series of compounds.


Assuntos
Doença de Graves , Receptores da Tireotropina , Humanos , Autoanticorpos , Doença de Graves/tratamento farmacológico , Receptores Acoplados a Proteínas G , Receptores da Tireotropina/antagonistas & inibidores , Tireotropina/metabolismo
2.
Thyroid ; 33(6): 732-742, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37016815

RESUMO

Background: Treatment of Graves' hyperthyroidism (GH) and Graves' orbitopathy (GO) is far from adequate, and hence, new substances that specifically target the autoantigens in GH/GO are warranted. This study determined the preclinical in vitro efficacy of SYD5115, a novel low-molecular-weight compound that inhibits the thyrotropin receptor (TSH-R). Methods: The TSH-R inhibiting capability of SYD5115 was tested through stimulation of wild-type and chimeric TSH-R expressed in Chinese hamster ovary (CHO) cells using two functional (stimulatory and blocking) cell-based TSH-R-Ab bioassays. TSH-R expressing human orbital fibroblasts, collected from GH+GO patients (GOF), were stimulated with the monoclonal antibody M22 or with stimulatory TSH-R-Ab (TSAb)-positive sera with cyclic adenosine monophosphate (cAMP) or hyaluronic acid (HA) release as readouts. The effect of SYD5115 on the viability of GOF was tested in 4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and scratch cell growth assays. Results: SYD5115 significantly and dose dependently inhibited the TSH-R activation through M22 or TSAb-positive sera in all performed bioassays. Inhibition showed similar levels in the TSAb reporter bioassay and in the cAMP assay with GOF. The % inhibition and compound concentration showed a sigmoidal relationship, with all seven TSAb-positive sera markedly inhibited by SYD5115. An SYD5115 dose-dependent inhibition of M22 (10 ng/mL, 6 hours)-stimulated HA and/or cAMP-release from GOF was observed. Strong SYD5115-induced inhibitions of M22-stimulated cAMP production in GOF were registered with SYD5115 concentrations of 1 (p = 0.0029), 10 (p < 0.0001), 100 (p < 0.0001), 1,000 (p < 0.0001), and 10,000 (p < 0.0001) nM, respectively. SYD5115-induced inhibition of M22-stimulated HA production was noted with SYD5115 concentrations of 100 (p = 0.0392), 1000 (p = 0.0431), and 10,000 (p = 0.0245) nM, respectively. The inhibitory activity of SYD5115 was confirmed in a human osteosarcoma U2OS cell line stably expressing human TSH-R with cAMP as readout. SYD5115 induced 100% inhibition of the M22-induced cAMP levels with a potency of 193 nM. Compared with control, SYD5115 did neither impact the growth nor the migration of cultivated GOF. In addition, SYD5115 did not alter the viability of GOF. Conclusions: SYD5115 blocked M22- and TSAb-induced TSH-R activity with a nanomolar potency in TSH-R-overexpressed CHO cells as well as primary GOF, which demonstrates the ability of this small molecule to block TSH-R overactivity.


Assuntos
Oftalmopatia de Graves , Receptores da Tireotropina , Cricetinae , Animais , Humanos , Oftalmopatia de Graves/tratamento farmacológico , Cricetulus , Células CHO , Imunoglobulinas Estimuladoras da Glândula Tireoide , Tireotropina/metabolismo , Autoanticorpos
3.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068796

RESUMO

BACKGROUND: Preclinical studies have firmly established the CD47-signal-regulatory protein (SIRP)α axis as a myeloid immune checkpoint in cancer, and this is corroborated by available evidence from the first clinical studies with CD47 blockers. However, CD47 is ubiquitously expressed and mediates functional interactions with other ligands as well, and therefore targeting of the primarily myeloid cell-restricted inhibitory immunoreceptor SIRPα may represent a better strategy. METHOD: We generated BYON4228, a novel SIRPα-directed antibody. An extensive preclinical characterization was performed, including direct comparisons to previously reported anti-SIRPα antibodies. RESULTS: BYON4228 is an antibody directed against SIRPα that recognizes both allelic variants of SIRPα in the human population, thereby maximizing its potential clinical applicability. Notably, BYON4228 does not recognize the closely related T-cell expressed SIRPγ that mediates interactions with CD47 as well, which are known to be instrumental in T-cell extravasation and activation. BYON4228 binds to the N-terminal Ig-like domain of SIRPα and its epitope largely overlaps with the CD47-binding site. BYON4228 blocks binding of CD47 to SIRPα and inhibits signaling through the CD47-SIRPα axis. Functional studies show that BYON4228 potentiates macrophage-mediated and neutrophil-mediated killing of hematologic and solid cancer cells in vitro in the presence of a variety of tumor-targeting antibodies, including trastuzumab, rituximab, daratumumab and cetuximab. The silenced Fc region of BYON4228 precludes immune cell-mediated elimination of SIRPα-positive myeloid cells, implying anticipated preservation of myeloid immune effector cells in patients. The unique profile of BYON4228 clearly distinguishes it from previously reported antibodies representative of agents in clinical development, which either lack recognition of one of the two SIRPα polymorphic variants (HEFLB), or cross-react with SIRPγ and inhibit CD47-SIRPγ interactions (SIRPAB-11-K322A, 1H9), and/or have functional Fc regions thereby displaying myeloid cell depletion activity (SIRPAB-11-K322A). In vivo, BYON4228 increases the antitumor activity of rituximab in a B-cell Raji xenograft model in human SIRPαBIT transgenic mice. Finally, BYON4228 shows a favorable safety profile in cynomolgus monkeys. CONCLUSIONS: Collectively, this defines BYON4228 as a preclinically highly differentiating pan-allelic SIRPα antibody without T-cell SIRPγ recognition that promotes the destruction of antibody-opsonized cancer cells. Clinical studies are planned to start in 2023.


Assuntos
Antígeno CD47 , Neoplasias , Camundongos , Animais , Humanos , Linfócitos T/metabolismo , Rituximab , Macrófagos , Neoplasias/tratamento farmacológico , Anticorpos Antineoplásicos
4.
Environ Health Perspect ; 112(15): 1544-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15531440

RESUMO

Environmental estrogens are of particular concern when exposure occurs during embryonic development. Although there are good models to study estrogenic activity of chemicals in adult animals, developmental exposure is much more difficult to test. The weak estrogenic activity of the environmental estrogen bisphenol A (BPA) in embryos is controversial. We have recently generated transgenic mice that carry a reporter construct with estrogen-responsive elements coupled to luciferase. We show that, using this in vivo model in combination with the IVIS imaging system, activation of estrogen receptors (ERs) by maternally applied BPA and other estrogens can be detected in living embryos in utero. Eight hours after exposure to 1 mg/kg BPA, ER transactivation could be significantly induced in the embryos. This was more potent than would be estimated from in vitro assays, although its intrinsic activity is still lower than that of diethylstilbestrol and 17beta-estradiol dipropionate. On the basis of these results, we conclude that the estrogenic potency of BPA estimated using in vitro assays might underestimate its estrogenic potential in embryos.


Assuntos
Estrogênios não Esteroides/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Troca Materno-Fetal , Camundongos Transgênicos/embriologia , Fenóis/toxicidade , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Animais , Compostos Benzidrílicos , Poluentes Ambientais/toxicidade , Estrogênios/toxicidade , Feminino , Genes Reporter , Camundongos , Gravidez , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA