Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 12(1): 51, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458859

RESUMO

BACKGROUND: Deleterious variants in the tumour suppressor BRCA1 are known to cause hereditary breast and ovarian cancer syndrome (HBOC). Missense variants in BRCA1 pose a challenge in clinical care, as their effect on protein functionality often remains unknown. Many of the pathogenic missense variants found in BRCA1 are located in the BRCA1 C-terminal (BRCT) domains, domains that are known to be vital for key functions such as homologous recombination repair, protein-protein interactions and trans-activation (TA). We investigated the TA activity of 12 BRCA1 variants of unknown clinical significance (VUSs) located in the BRCT domains to aid in the classification of these variants. RESULTS: Twelve BRCA1 VUSs were investigated using a modified version of the dual luciferase TA activity assay (TA assay) that yielded increased sensitivity and sample throughput. Variants were classified according to American College of Medical Genetics and Genomics (ACMG) criteria using TA assay results and available data. In combining our TA-assay results and available data, in accordance with the ACMG guidelines for variant classification, we proposed the following variant classifications: c.5100A>G, c.5326C>T, c.5348T>C and c.5477A>T as likely benign (class 2) variants. c.5075A>C, c.5116G>A and c.5513T>G were likely pathogenic (class 4), whereas c.5096G>A likely represents a likely pathogenic variant with moderate penetrance. Variants c.5123C>T, c.5125G>A, c.5131A>C and c.5504G>A remained classified as VUSs (class 3). CONCLUSIONS: The modified TA assay provides efficient risk assessment of rare missense variants found in the BRCA1 BRCT-domains. We also report that increased post-transfection incubation time yielded a significant increase in TA assay sensitivity.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Testes Genéticos , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Ativação Transcricional , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Células HEK293 , Humanos , Medição de Risco , Sensibilidade e Especificidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-31143303

RESUMO

BACKGROUND: Pathogenic variants in BRCA1 and BRCA2 cause hereditary breast and ovarian cancer. Screening of these genes has become easily accessible in diagnostic laboratories. Sequencing and copy number analyses are used to detect pathogenic variants, but also lead to identification of variants of unknown clinical significance (VUS). If the effect of a VUS can be clarified, it has direct consequence for the clinical management of the patient and family members. A splicing assay is one of several tools that might help in the classification of VUS. We therefore established mRNA analyses for BRCA1 and BRCA2 in the diagnostic laboratory in 2015. We hereby report the results of mRNA analysis variants in BRCA1 and BRCA2 after three years. METHODS: Variants predicted to alter splicing and variants within the canonical splice sites were selected for splicing analyses. Splicing assays were performed by reverse transcription-PCR of patient RNA. A biallalic expression analysis was carried out whenever possible. RESULTS: Twenty-five variants in BRCA1 and BRCA2 were analyzed by splicing assays; nine showed altered transcripts and 16 showed normal splicing patterns. The two novel pathogenic variants in BRCA1 c.4484 + 3 A > C and c.5407-10G > A were characterized. CONCLUSIONS: We conclude that mRNA analyses are useful in characterization of variants that may affect splicing. The results can guide classification of variants from unknown clinical significance to pathogenic or benign in a diagnostic laboratory, and thus be of direct clinical importance.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29339979

RESUMO

BACKGROUND: Founder mutations in the two breast cancer genes, BRCA1 and BRCA2, have been described in many populations, among these are Ashkenazi-Jewish, Polish, Norwegian and Icelandic. Founder mutation testing in patients with relevant ancestry has been a cost-efficient approach in such populations. Four Norwegian BRCA1 founder mutations were defined by haplotyping in 2001, and accounted for 68% of BRCA1 mutation carriers at the time. After 15 more years of genetic testing, updated knowledge on the mutation spectrum of both BRCA1 and BRCA2 in Norway is needed. In this study, we aim at describing the mutation spectrum and frequencies in the BRCA1/2 carrier population of the largest clinic of hereditary cancer in Norway. METHODS: A total of 2430 BRCA1 carriers from 669 different families, and 1092 BRCA2 carriers from 312 different families were included in a quality of care study. All variants were evaluated regarding pathogenicity following ACMG/ENIGMA criteria. The variants were assessed in AlaMut and supplementary databases to determine whether they were known to be founder mutations in other populations. RESULTS: There were 120 different BRCA1 and 87 different BRCA2 variants among the mutation carriers. Forty-six per cent of the registered BRCA1/2 families (454/981) had a previously reported Norwegian founder mutation. The majority of BRCA1/2 mutations (71%) were rare, each found in only one or two families. Fifteen per cent of BRCA1 families and 25% of BRCA2 families had one of these rare variants. The four well-known Norwegian BRCA1 founder mutations previously confirmed through haplotyping were still the four most frequent mutations in BRCA1 carriers, but the proportion of BRCA1 mutation carriers accounted for by these mutations had fallen from 68 to 52%, and hence the founder effect was weaker than previously described. CONCLUSIONS: The spectrum of BRCA1 and BRCA2 mutations in the carrier population at Norway's largest cancer genetics clinic is diverse, and with a weaker founder effect than previously described. As a consequence, retesting the families that previously have been tested with specific tests/founder mutation tests should be a prioritised strategy to find more mutation positive families and possibly prevent cancer in healthy relatives.

4.
BMC Cancer ; 17(1): 438, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637432

RESUMO

BACKGROUND: Identification of BRCA mutations in breast cancer (BC) patients influences treatment and survival and may be of importance for their relatives. Testing is often restricted to women fulfilling high-risk criteria. However, there is limited knowledge of the sensitivity of such a strategy, and of the clinical aspects of BC caused by BRCA mutations in less selected BC cohorts. The aim of this report was to address these issues by evaluating the results of BRCA testing of BC patients in South-Eastern Norway. METHODS: 1371 newly diagnosed BC patients were tested with sequencing and Multi Ligation Probe Amplification (MLPA). Prevalence of mutations was calculated, and BC characteristics among carriers and non-carriers compared. Sensitivity and specificity of common guidelines for BRCA testing to identify carriers was analyzed. Number of identified female mutation positive relatives was evaluated. RESULTS: A pathogenic BRCA mutation was identified in 3.1%. Carriers differed from non-carriers in terms of age at diagnosis, family history, grade, ER/PR-status, triple negativity (TNBC) and Ki67, but not in HER2 and TNM status. One mutation positive female relative was identified per mutation positive BC patient. Using age of onset below 40 or TNBC as criteria for testing identified 32-34% of carriers. Common guidelines for testing identified 45-90%, and testing all below 60 years identified 90%. Thirty-seven percent of carriers had a family history of cancer that would have qualified for predictive BRCA testing. A Variant of Uncertain Significance (VUS) was identified in 4.9%. CONCLUSIONS: Mutation positive BC patients differed as a group from mutation negative. However, the commonly used guidelines for testing were insufficient to detect all mutation carriers in the BC cohort. Thirty-seven percent had a family history of cancer that would have qualified for predictive testing before they were diagnosed with BC. Based on our combined observations, we suggest it is time to discuss whether all BC patients should be offered BRCA testing, both to optimize treatment and improve survival for these women, but also to enable identification of healthy mutation carriers within their families. Health services need to be aware of referral possibility for healthy women with cancer in their family.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Testes Genéticos , Adulto , Idoso , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade , Mutação , Noruega
5.
Genes (Basel) ; 14(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36833189

RESUMO

The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Mutação de Sentido Incorreto , Neoplasias Ovarianas , Feminino , Humanos , Proteína BRCA1/genética , Células Germinativas/metabolismo , Neoplasias Ovarianas/genética , Domínios Proteicos , Neoplasias da Mama/genética
6.
Fam Cancer ; 21(4): 389-398, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34981296

RESUMO

Pathogenic germline variants in Breast cancer susceptibility gene 1 (BRCA1) predispose carriers to hereditary breast and ovarian cancer (HBOC). Through genetic testing of patients with suspected HBOC an increasing number of novel BRCA1 variants are discovered. This creates a growing need to determine the clinical significance of these variants through correct classification (class 1-5) according to established guidelines. Here we present a joint collection of all BRCA1 variants of class 2-5 detected in the four diagnostic genetic laboratories in Norway. The overall objective of the study was to generate an overview of all BRCA1 variants in Norway and unveil potential discrepancies in variant interpretation between the hospitals, serving as a quality control at the national level. For a subset of variants, we also assessed the change in classification over a ten-year period with increasing information available. In total, 463 unique BRCA1 variants were detected. Of the 126 variants found in more than one hospital, 70% were interpreted identically, while 30% were not. The differences in interpretation were mainly by one class (class 2/3 or 4/5), except for one larger discrepancy (class 3/5) which could affect the clinical management of patients. After a series of digital meetings between the participating laboratories to disclose the cause of disagreement for all conflicting variants, the discrepancy rate was reduced to 10%. This illustrates that variant interpretation needs to be updated regularly, and that data sharing and improved national inter-laboratory collaboration greatly improves the variant classification and hence increases the accuracy of cancer risk assessment.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Laboratórios , Proteína BRCA1/genética , Genes BRCA1 , Neoplasias da Mama/genética , Testes Genéticos , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/genética , Células Germinativas , Predisposição Genética para Doença , Proteína BRCA2/genética , Mutação em Linhagem Germinativa
7.
ESMO Open ; 3(3): e000328, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682331

RESUMO

BACKGROUND: Identification of BRCA mutation carriers among patients with breast cancer (BC) involves costs and gains. Testing has been performed according to international guidelines, focusing on family history (FH) of breast and/or ovarian cancer. An alternative is testing all patients with BC employing sequencing of the BRCA genes and Multiplex Ligation Probe Amplification (MLPA). PATIENTS AND METHODS: A model-based cost-effectiveness analysis, employing data from Oslo University Hospital, Ullevål (OUH-U) and a decision tree, was done. The societal and the healthcare perspectives were focused and a lifetime perspective employed. The comparators were the traditional FH approach used as standard of care at OUH-U in 2013 and the intervention (testing all patients with BC) performed in 2014 and 2015 at the same hospital. During the latter period, 535 patients with BC were offered BRCA testing with sequencing and MLPA. National 2014 data on mortality rates and costs were implemented, a 3% discount rate used and the costing year was 2015. The incremental cost-effectiveness ratio was calculated in euros (€) per life-year gained (LYG). RESULTS: The net healthcare cost (healthcare perspective) was €40 503/LYG. Including all resource use (societal perspective), the cost was €5669/LYG. The univariate sensitivity analysis documented the unit cost of the BRCA test and the number of LYGs the prominent parameters affecting the result.Diagnostic BRCA testing of all patients with BC was superior to the FH approach and cost-effective within the frequently used thresholds (healthcare perspective) in Norway (€60 000-€80 000/LYG).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA