Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405823, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856634

RESUMO

Invasive fungal disease accounts for ~3.8 million deaths annually, an unacceptable rate that urgently prompts the discovery of new knowledge-driven treatments. We report the use of camelid single-domain nanobodies (Nbs) against fungal ß-1,3-glucanosyltransferases (Gel) involved in ß-1,3-glucan transglycosylation. Crystal structures of two Nbs with Gel4 from Aspergillus fumigatus revealed binding to a dissimilar CBM43 domain and a highly conserved catalytic domain across fungal species, respectively. Anti-Gel4 active site Nb3 showed significant antifungal efficacy in vitro and in vivo prophylactically and therapeutically against different A. fumigatus and Cryptococcus neoformans isolates, reducing the fungal burden and disease severity, thus significantly improving immunocompromised animal survival. Notably, C. deneoformans (serotype D) strains were more susceptible to Nb3 and genetic Gel deletion than C. neoformans (serotype A) strains, indicating a key role for ß-1,3-glucan remodelling in C. deneoformans survival. These findings add new insights about the role of b-1,3-glucan in fungal biology and demonstrate the potential of nanobodies in targeting fungal enzymes to combat invasive fungal diseases.

2.
Histochem Cell Biol ; 159(1): 47-60, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36175690

RESUMO

The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imageamento Tridimensional , Citoesqueleto , Comunicação Celular
3.
Angew Chem Int Ed Engl ; 62(8): e202216142, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36562327

RESUMO

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.


Assuntos
Corantes Fluorescentes , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Granzimas , Células Matadoras Naturais , Camundongos Knockout
4.
J Cell Physiol ; 233(5): 4183-4193, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29030987

RESUMO

Serotonin (5-HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5-HT effects depend on extracellular 5-HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5-HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco-2/TC7 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. A negative feedback between 5-HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco-2/TC7 cells. To assess the extend of cross-talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5-HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation.


Assuntos
Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Células CACO-2 , Enterócitos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
5.
Cell Physiol Biochem ; 47(3): 1217-1229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29913461

RESUMO

BACKGROUND/AIMS: Serotonin (5-HT) is a chief modulator of intestinal activity. The effects of 5-HT depend on its extracellular availability, which is mainly controlled by serotonin transporter (SERT), expressed in enterocytes. On the other hand, innate immunity, mediated by Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), is known to control intestinal microbiota and maintain intestinal homeostasis. The dysregulation of the intestinal serotonergic system and innate immunity has been observed in inflammatory bowel diseases (IBD), the incidence of which has severely increased all over the world. The aim of the present study, therefore, was to analyze the effect of NOD2 on intestinal SERT activity and expression, as well as to study the crosstalk of NOD2 with TLR2 and TLR4. METHODS: Intestinal epithelial cell line Caco-2/TC7 was used to analyze SERT activity and SERT, NOD2, TLR2 and TLR4 molecular expression by real-time PCR and western blotting. Moreover, intestinal tract (ileum and colon) from mice deficient in TLR2, TLR4 or TLR2/4 receptors was used to test the interdependence of NOD2 with these TLR receptors. RESULTS: NOD2 activation inhibits SERT activity in Caco-2/TC7 cells, mainly due to the decrement of SERT molecular expression, with RIP2/RICK being the intracellular pathway involved in this effect. This inhibitory effect on SERT would yield an increment of extracellular 5-HT availability. In this sense, 5-HT strongly inhibits NOD2 expression. In addition, NOD2 showed greater interdependence with TLR2 than with TLR4. Indeed, NOD2 expression significantly increased in both cells treated with TLR2 agonists and the intestinal tract of Tlr2-/- mice. CONCLUSIONS: It may be inferred from our data that NOD2 could play a role in intestinal pathophysiology not only through its inherent innate immune role but also due to its interaction with other receptors as TLR2 and the modulation of the intestinal serotonergic system decreasing SERT activity and expression.


Assuntos
Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células CACO-2 , Enterócitos/citologia , Humanos , Mucosa Intestinal/citologia , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
6.
Part Fibre Toxicol ; 14(1): 41, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29073907

RESUMO

BACKGROUND: The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. METHODS: Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. RESULTS: Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. CONCLUSION: Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Células A549 , Animais , Linhagem Celular Transformada , Forma Celular/efeitos dos fármacos , Feminino , Ouro/administração & dosagem , Ouro/farmacocinética , Células HeLa , Humanos , Mediadores da Inflamação/sangue , Injeções Intravenosas , Interferon gama/sangue , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Distribuição Tecidual , Fator de Necrose Tumoral alfa/sangue
7.
J Infect Dis ; 210(3): 467-72, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24558120

RESUMO

BACKGROUND: Recently, novel atypical Brucella strains isolated from humans and wild rodents have been reported. They are phenotypically close to Ochrobactrum species but belong to the genus Brucella, based on genetic relatedness, although genetic diversity is higher among the atypical Brucella strains than between the classic species. They were classified within or close to the novel species Brucella inopinata. However, with the exception of Brucella microti, the virulence of these novel strains has not been investigated in experimental models of infection. METHODS: The type species B. inopinata strain BO1 (isolated from a human) and Brucella species strain 83-210 (isolated from a wild Australian rodent) were investigated. A classic infectious Brucella reference strain, B. suis 1330, was also used. BALB/c, C57BL/6, and CD1 mice models and C57BL/6 mouse bone-marrow-derived macrophages (BMDMs) were used as infection models. RESULTS: Strains BO1 and 83-210 behaved similarly to reference strain 1330 in all mouse infection models: there were similar growth curves in spleens and livers of mice and similar intracellular replication rates in BMDMs. However, unlike strain 1330, strains BO1 and 83-210 showed lethality in the 3 mouse models. CONCLUSIONS: The novel atypical Brucella strains of this study behave like classic intracellular Brucella pathogens. In addition, they cause death in murine models of infection, as previously published for B. microti, another recently described environmental and wildlife species.


Assuntos
Brucella/classificação , Brucella/patogenicidade , Brucelose/microbiologia , Brucelose/mortalidade , Animais , Células Cultivadas , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos , Virulência
8.
Commun Biol ; 7(1): 222, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396285

RESUMO

Fungal polysaccharides can exert immunomodulating activity by triggering pattern recognition receptors (PRRs) on innate immune cells such as macrophages. Here, we evaluate six polysaccharides isolated from the medicinal fungus Inonotus obliquus for their ability to activate mouse and human macrophages. We identify two water-soluble polysaccharides, AcF1 and AcF3, being able to trigger several critical antitumor functions of macrophages. AcF1 and AcF3 activate macrophages to secrete nitric oxide and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Combined with interferon-γ, the fungal polysaccharides trigger high production of IL-12p70, a central cytokine for antitumor immunity, and induce macrophage-mediated inhibition of cancer cell growth in vitro and in vivo. AcF1 and AcF3 are strong agonists of the PRRs Toll-like receptor 2 (TLR2) and TLR4, and weak agonists of Dectin-1. In comparison, two prototypical particulate ß-glucans, one isolated from I. obliquus and one from Saccharomyces cerevisiae (zymosan), are agonists for Dectin-1 but not TLR2 or TLR4, and are unable to trigger anti-cancer functions of macrophages. We conclude that the water-soluble polysaccharides AcF1 and AcF3 from I. obliquus have a strong potential for cancer immunotherapy by triggering multiple PRRs and by inducing potent anti-cancer activity of macrophages.


Assuntos
Polissacarídeos Fúngicos , Inonotus , Camundongos , Humanos , Animais , Polissacarídeos Fúngicos/farmacologia , Receptor 4 Toll-Like , Lectinas Tipo C , Receptores Toll-Like , Macrófagos , Citocinas , Água
9.
Vet Res Commun ; 48(1): 533-540, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37548874

RESUMO

SARS-CoV-2 is the causal agent of Coronavirus Disease 2019 (COVID-19) in humans that emerged in late 2019. This virus is able to infect humans and different animal species. Among pets, cats and ferrets are more susceptible to be infected by the SARS-CoV-2. Epidemiological studies are an important tool to provide information under natural conditions of exposure to SARS-CoV-2 virus. In comparison to cats, limited epidemiological studies have been performed in domestic ferrets (Mustela putorius furo) reporting the presence of antibodies in this species. This study analysed the presence of anti-SARS-CoV-2 antibodies in 432 cliend-owned ferrets from different geographical areas of Spain during the different waves of COVID-19 outbreaks from December 2019 to May 2023 (42 months). For this purpose, anti-SARS-CoV-2 antibodies were detected by an enzyme-linked immunosorbent method (ELISA) using the receptor binding domain (RBD) of Spike antigen and confirmed by serum virus neutralization assay. Eighteen of the 432 ferrets included were seroreactive by the in-house ELISA (4.17%, 95% Confidence Interval (CI): 2.65-6.49). In this sense, the wave of COVID-19 with the higher number of seropositive ferrets occurred during the seventh wave when the different Omicron subvariants were the dominant virus variants. Our results suggest that the risk of SARS-CoV-2 transmission in domestic ferrets in natural conditions is low. Further research is need to evaluate the potential risk of transmission of SARS-CoV-2 from human to pets.


Assuntos
COVID-19 , Furões , Animais , Humanos , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2 , Estudos Soroepidemiológicos , Espanha/epidemiologia , Anticorpos Antivirais
10.
Zoonoses Public Health ; 71(3): 324-330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37872888

RESUMO

Influenza A is an emerging zoonotic virus with worldwide distribution. To our knowledge, no studies have been conducted to assess influenza A exposure in stray cats in regions with positive cases of wild birds. This study aimed to determine the seroprevalence of anti-influenza A antibodies in feral cats from a region in Spain with cases of positive wild birds. A cross-sectional study of stray cats (n = 183) was conducted between March 2022 and March 2023. The presence of antibodies against the influenza A virus was tested using a commercial enzyme-linked immunosorbent assay kit adapted for this study and confirmed by competitive enzyme-linked immunosorbent assay for the detection of antibodies against the haemagglutinin H5. During sample collection, none of the cats exhibited clinical signs of illness. Four of the 183 animals tested showed anti-influenza A antibodies by ELISA, and the seroprevalence of influenza A was 2.19% (95% confidence interval 0.85%-5.48%). Due to the low number of positive cases detected, it appears that cats did not have an important epidemiological role in influenza A transmission during this period.


Assuntos
Doenças do Gato , Influenza Aviária , Influenza Humana , Animais , Gatos , Humanos , Influenza Aviária/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Anticorpos Antivirais , Animais Selvagens , Aves , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças do Gato/epidemiologia
11.
ACS Pharmacol Transl Sci ; 7(5): 1474-1484, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751645

RESUMO

Granzymes (Gzms), a family of serine proteases, expressed by immune and nonimmune cells, present perforin-dependent and independent intracellular and extracellular functions. When released in the extracellular space, GzmA, with trypsin-like activity, is involved in the pathophysiology of different inflammatory diseases. However, there are no validated specific systems to detect active forms of extracellular GzmA, making it difficult to assess its biological relevance and potential use as a biomarker. Here, we have developed fluorescence-energy resonance-transfer (FRET)-based peptide probes (FAM-peptide-DABCYL) to specifically detect GzmA activity in tissue samples and biological fluids in both mouse and human samples during inflammatory diseases. An initial probe was developed and incubated with GzmA and different proteases like GzmB and others with similar cleavage specificity as GzmA like GzmK, thrombin, trypsin, kallikrein, or plasmin. After measuring fluorescence, the probe showed very good specificity and sensitivity for human and mouse GzmA when compared to GzmB, its closest homologue GzmK, and with thrombin. The specificity of this probe was further refined by incubating the samples in a coated plate with a GzmA-specific antibody before adding the probe. The results show a high specific detection of soluble GzmA even when compared with other soluble proteases with very similar cleavage specificity like thrombin, GzmK, trypsin, kallikrein, or plasmin, which shows nearly no fluorescence signal. The high specific detection of GzmA was validated, showing that using pure proteins and serum and tissue samples from GzmA-deficient mice presented a significant reduction in the signal compared with WT mice. The utility of this system in humans was confirmed, showing that GzmA activity was significantly higher in serum samples from septic patients in comparison with healthy donors. Our results present a new immunoprobe with utility to detect extracellular GzmA activity in different biological fluids, confirming the presence of active forms of the soluble protease in vivo during inflammatory and infectious diseases.

12.
Sci Rep ; 14(1): 4395, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388659

RESUMO

Self-assembling peptides (SAPs) have gained significant attention in biomedicine because of their unique properties and ability to undergo molecular self-assembly driven by non-covalent interactions. By manipulating their composition and structure, SAPs can form well-ordered nanostructures with enhanced selectivity, stability and biocompatibility. SAPs offer advantages such as high chemical and biological diversity and the potential for functionalization. However, studies concerning its potentially toxic effects are very scarce, a limitation that compromises its potential translation to humans. This study investigates the potentially toxic effects of six different SAP formulations composed of natural amino acids designed for nervous tissue engineering and amenable to ready cross-linking boosting their biomechanical properties. All methods were performed in accordance with the relevant guidelines and regulations. A wound-healing assay was performed to evaluate how SAPs modify cell migration. The results in vitro demonstrated that SAPs did not induce genotoxicity neither skin sensitization. In vivo, SAPs were well-tolerated without any signs of acute systemic toxicity. Interestingly, SAPs were found to promote the migration of endothelial, macrophage, fibroblast, and neuronal-like cells in vitro, supporting a high potential for tissue regeneration. These findings contribute to the development and translation of SAP-based biomaterials for biomedical applications.


Assuntos
Nanoestruturas , Peptídeos , Humanos , Peptídeos/química , Engenharia Tecidual/métodos , Neurônios , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Nanoestruturas/química
13.
Cell Death Differ ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783091

RESUMO

Necroptosis is a caspase-independent modality of cell death implicated in many inflammatory pathologies. The execution of this pathway requires the formation of a cytosolic platform that comprises RIPK1 and RIPK3 which, in turn, mediates the phosphorylation of the pseudokinase MLKL (S345 in mouse). The activation of this executioner is followed by its oligomerisation and accumulation at the plasma-membrane where it leads to cell death via plasma-membrane destabilisation and consequent permeabilisation. While the biochemical and cellular characterisation of these events have been amply investigated, the study of necroptosis involvement in vivo in animal models is currently limited to the use of Mlkl-/- or Ripk3-/- mice. Yet, even in many of the models in which the involvement of necroptosis in disease aetiology has been genetically demonstrated, the fundamental in vivo characterisation regarding the question as to which tissue(s) and specific cell type(s) therein is/are affected by the pathogenic necroptotic death are missing. Here, we describe and validate an immunohistochemistry and immunofluorescence-based method to reliably detect the phosphorylation of mouse MLKL at serine 345 (pMLKL-S345). We first validate the method using tissues derived from mice in which Caspase-8 (Casp8) or FADD are specifically deleted from keratinocytes, or intestinal epithelial cells, respectively. We next demonstrate the presence of necroptotic activation in the lungs of SARS-CoV-infected mice and in the skin and spleen of mice bearing a Sharpin inactivating mutation. Finally, we exclude necroptosis occurrence in the intestines of mice subjected to TNF-induced septic shock. Importantly, by directly comparing the staining of pMLKL-345 with that of cleaved Caspase-3 staining in some of these models, we identify spatio-temporal and functional differences between necroptosis and apoptosis supporting a role of RIPK3 in inflammation independently of MLKL versus the role of RIPK3 in activation of necroptosis.

14.
Front Immunol ; 15: 1289303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352878

RESUMO

Immunotherapy treatments aim to modulate the host's immune response to either mitigate it in inflammatory/autoimmune disease or enhance it against infection or cancer. Among different immunotherapies reaching clinical application during the last years, chimeric antigen receptor (CAR) immunotherapy has emerged as an effective treatment for cancer where different CAR T cells have already been approved. Yet their use against infectious diseases is an area still relatively poorly explored, albeit with tremendous potential for research and clinical application. Infectious diseases represent a global health challenge, with the escalating threat of antimicrobial resistance underscoring the need for alternative therapeutic approaches. This review aims to systematically evaluate the current applications of CAR immunotherapy in infectious diseases and discuss its potential for future applications. Notably, CAR cell therapies, initially developed for cancer treatment, are gaining recognition as potential remedies for infectious diseases. The review sheds light on significant progress in CAR T cell therapy directed at viral and opportunistic fungal infections.


Assuntos
Doenças Transmissíveis , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Doenças Transmissíveis/terapia
15.
Cell Death Differ ; 31(5): 544-557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514848

RESUMO

The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.


Assuntos
COVID-19 , Modelos Animais de Doenças , Proteína Ligante Fas , SARS-CoV-2 , COVID-19/patologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , COVID-19/mortalidade , Animais , Proteína Ligante Fas/metabolismo , Camundongos , Humanos , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Masculino , Inflamação/patologia , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Macrófagos/metabolismo , Macrófagos/patologia
16.
Jt Dis Relat Surg ; 34(2): 271-278, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37462629

RESUMO

OBJECTIVES: This study aims to assess the development of osteoarthritis (OA) in granzyme A- (gzmA) and B- (gzmB) and perforin- (perf) knockout mice. MATERIALS AND METHODS: A total of 75 male and female C57BL/6 (eight to nine-week-old) mice were allocated to: gzmA-deficient (gzmA-/-) (11 females, 8 males), gzmB-deficient (gzmB-/-) (9 females, 8 males), perf-deficient (perf-/-) (10 females, 9 males), and control group (10 females, 10 males). Osteoarthritis was induced in the right knee by instability of the meniscus medial ligament. Sham surgery was practiced in the left knee. Knee samples obtained eight weeks after surgery were stained (Safranin-O) and blindly scored in lateral and medial femur and tibia using the Osteoarthritis Research Society International scale (OARSI) (from Grade 0, cartilage intact to 6, deformation), (five stages from 0, no OA to 4, >50% surface involvement); OARSI score (Grade x Stage); and a semi-quantitative scale from Grade 0 (normal) to 6 (cartilage erosion >80%). RESULTS: Significantly higher values in all scales in the right knees compared to the left knees in male and female mice were observed (p<0.05). Males of all strains showed in the right knee higher values than females on all scales. Deficiency of perforin did not modify OA severity in any sex. The gzmA-/- females presented less degenerative changes than the other groups. CONCLUSION: Our study results show that sex plays an important role in the development of experimental OA in mice. Deficiency of gzmA can protect from the development of OA in female mice.


Assuntos
Osteoartrite , Animais , Feminino , Masculino , Camundongos , Cartilagem , Granzimas/genética , Camundongos Endogâmicos C57BL , Osteoartrite/genética , Perforina/genética
17.
Vet Res Commun ; 47(4): 2179-2184, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36918467

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of Coronavirus Disease 2019 in humans. To date, little is known about the persistence of antibodies against SARS-CoV-2 in animals under natural conditions, in particular susceptible pets such as cat. This study reports the detection and monitoring of the humoral response against SARS-CoV-2 including the detection of immunoglobulins G specific for receptor binding domain of SARS-CoV-2 spike protein by an enzyme-linked immunosorbent assay and neutralizing antibodies by virus neutralization assay. Results showed that these antibodies last longer than 16 months in two naturally apparently healthy infected cats with the absence of clinicopathological findings during the follow-up. Moreover, re-infection is also possible with an important increase in virus neutralization test titers in both animals with no evident systemic signs found during each physical examination and with values of hematologic and biochemical parameters inside the normal reference intervals. Our results confirm a slow but progressive decrease of the kinetics and immunity of neutralizing antibodies in cats after the infection. Furthermore, similar to humans SARS-CoV-2 reinfection can stimulate an increase of the neutralizing antibodies determined by these two serological techniques in domestic cats.


Assuntos
COVID-19 , Doenças do Gato , Gatos , Animais , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Reinfecção/veterinária , COVID-19/veterinária , Anticorpos Antivirais
18.
Angew Chem Weinheim Bergstr Ger ; 135(8): e202216142, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38515764

RESUMO

Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.

19.
Vet Res Commun ; 47(2): 615-629, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36229725

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of Coronavirus Disease 2019 in humans. Among domestic animals, cats are more susceptible to SARS-CoV-2 than dogs. The detection of anti-SARS-CoV-2 antibodies in seemingly healthy cats and/or infected cats which are in close contact with infected humans has been described. The presence of animals that tested positive by serology or molecular techniques could represent a potential transmission pathway of SARS-CoV-2 that can spill over into urban wildlife. This study analyses the seroprevalence variation of SARS-CoV-2 in stray cats from different waves of outbreaks in a geographical area where previous seroepidemiological information of SARS-CoV-2 was available and investigate if SARS-CoV-2-seropositive cats were exposed to other co-infections causing an immunosuppressive status and/or a chronic disease that could lead to a SARS-CoV-2 susceptibility. For this purpose, a total of 254 stray cats from Zaragoza (Spain) were included. This analysis was carried out by the enzyme-linked immunosorbent assay using the receptor binding domain of Spike antigen and confirmed by serum virus neutralization assay. The presence of co-infections including Toxoplasma gondii, Leishmania infantum, Dirofilaria immitis, feline calicivirus, feline herpesvirus type 1, feline leukemia virus and feline immunodeficiency virus, was evaluated using different serological methods. A seropositivity of 1.57% was observed for SARS-CoV-2 including the presence of neutralizing antibodies in three cats. None of the seropositive to SARS-CoV-2 cats were positive to feline coronavirus, however, four SARS-CoV-2-seropositive cats were also seropositive to other pathogens such as L. infantum, D. immitis and FIV (n = 1), L. infantum and D. immitis (n = 1) and L. infantum alone (n = 1).Considering other pathogens, a seroprevalence of 16.54% was detected for L. infantum, 30.31% for D. immitis, 13.78%, for T. gondii, 83.86% for feline calicivirus, 42.52% for feline herpesvirus type 1, 3.15% for FeLV and 7.87% for FIV.Our findings suggest that the epidemiological role of stray cats in SARS-CoV-2 transmission is scarce, and there is no increase in seropositivity during the different waves of COVID-19 outbreaks in this group of animals. Further epidemiological surveillances are necessary to determine the risk that other animals might possess even though stray cats do not seem to play a role in transmission.


Assuntos
COVID-19 , Doenças do Gato , Coinfecção , Dirofilaria immitis , Doenças do Cão , Vírus da Imunodeficiência Felina , Humanos , Gatos , Animais , Cães , Doenças do Gato/epidemiologia , SARS-CoV-2 , Coinfecção/epidemiologia , Coinfecção/veterinária , Espanha/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , COVID-19/epidemiologia , COVID-19/veterinária , Vírus da Leucemia Felina , Surtos de Doenças , Doenças do Cão/epidemiologia
20.
Nat Commun ; 14(1): 6090, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794033

RESUMO

Intravesical administration of Bacillus Calmette-Guérin (BCG) was one of the first FDA-approved immunotherapies and remains a standard treatment for bladder cancer. Previous studies have demonstrated that intravenous (IV) administration of BCG is well-tolerated and effective in preventing tuberculosis infection in animals. Here, we examine IV BCG in several preclinical lung tumor models. Our findings demonstrate that BCG inoculation reduced tumor growth and prolonged mouse survival in models of lung melanoma metastasis and orthotopic lung adenocarcinoma. Moreover, IV BCG treatment was well-tolerated with no apparent signs of acute toxicity. Mechanistically, IV BCG induced tumor-specific CD8+ T cell responses, which were dependent on type 1 conventional dendritic cells, as well as NK cell-mediated immunity. Lastly, we also show that IV BCG has an additive effect on anti-PD-L1 checkpoint inhibitor treatment in mouse lung tumors that are otherwise resistant to anti-PD-L1 as monotherapy. Overall, our study demonstrates the potential of systemic IV BCG administration in the treatment of lung tumors, highlighting its ability to enhance immune responses and augment immune checkpoint blockade efficacy.


Assuntos
Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Camundongos , Animais , Vacina BCG , Neoplasias da Bexiga Urinária/patologia , Linfócitos T CD8-Positivos , Administração Intravenosa , Imunidade Celular , Células Matadoras Naturais , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA