Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 186(5): 3164-72, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21270400

RESUMO

We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.


Assuntos
Alérgenos/imunologia , Blattellidae/imunologia , Receptor PAR-2/metabolismo , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/fisiologia , Administração Intranasal , Alérgenos/administração & dosagem , Animais , Blattellidae/enzimologia , Hiper-Reatividade Brônquica/enzimologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Linhagem Celular Transformada , Modelos Animais de Doenças , Ativação Enzimática/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Nasal/enzimologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Ratos , Receptor PAR-2/deficiência , Receptor PAR-2/imunologia , Hipersensibilidade Respiratória/enzimologia
2.
Allergy Asthma Clin Immunol ; 7: 22, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22168152

RESUMO

BACKGROUND: Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant. METHODS: Cockroach extract (CE) was administered to mice intranasally (i.n.) daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR) was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate. RESULTS: Mucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol. CONCLUSIONS: Mucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA