RESUMO
Running is one of the most popular sports practiced today and biomechanical variables are fundamental to understanding it. The main objectives of this study are to describe kinetic, kinematic, and spatiotemporal variables measured using four inertial measurement units (IMUs) in runners during treadmill running, investigate the relationships between these variables, and describe differences associated with different data sampling and averaging strategies. A total of 22 healthy recreational runners (M age = 28 ± 5.57 yrs) participated in treadmill measurements, running at their preferred speed (M = 10.1 ± 1.9 km/h) with a set-up of four IMUs placed on tibias and the lumbar area. Raw data was processed and analysed over selections spanning 30 s, 30 steps and 1 step. Very strong positive associations were obtained between the same family variables in all selections. The temporal variables were inversely associated with the step rate variable in the selection of 30 s and 30 steps of data. There were moderate associations between kinetic (forces) and kinematic (displacement) variables. There were no significant differences between the biomechanics variables in any selection. Our results suggest that a 4-IMU set-up, as presented in this study, is a viable approach for parameterization of the biomechanical variables in running, and also that there are no significant differences in the biomechanical variables studied independently, if we select data from 30 s, 30 steps or 1 step for processing and analysis. These results can assist in the methodological aspects of protocol design in future running research.
Assuntos
Nível de Saúde , Corrida , Fenômenos Biomecânicos , Cinética , Região LombossacralRESUMO
Recent phylogenetic studies have shown that Saxifraga, as currently understood, must be divided into two genera: Saxifraga L. sensu stricto and Micranthes Haw. To better understand the evolutionary history of these two genera, we performed phylogenetic analyses inferred from the nuclear ribosomal sequences from the internal transcribed spacer and the sequences of the plastid DNA (rbcL). Our molecular data confirmed the monophyly of the genus Micranthes and the consistency of the existing systematic treatments based on morphological criteria. Moreover, Micranthes species native from the Iberian Peninsula (i.e. M. clusii, M. lepismigena and M. stellaris) should be included into Micranthes sect. Arabisa.