Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(25): 12327-12336, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31164416

RESUMO

Many neurons display characteristic patterns of synaptic connections that are under genetic control. The Caenorhabditis elegans DA cholinergic motor neurons form synaptic connections only on their dorsal axons. We explored the genetic pathways that specify this polarity by screening for gene inactivations and mutations that disrupt this normal polarity of a DA motorneuron. A RAB-3::GFP fusion protein that is normally localized to presynaptic terminals along the dorsal axon of the DA9 motorneuron was used to screen for gene inactivations that disrupt the DA9 motorneuron polarity. This screen identified heterochronic genes as major regulators of DA neuron presynaptic polarity. In many heterochronic mutants, presynapses of this cholinergic motoneuron are mislocalized to the dendrite at the ventral side: inactivation of the blmp-1 transcription factor gene, the lin-29/Zn finger transcription factor, lin-28/RNA binding protein, and the let-7miRNA gene all disrupt the presynaptic polarity of this DA cholinergic neuron. We also show that the dre-1/F box heterochronic gene functions early in development to control maintenance of polarity at later stages, and that a mutation in the let-7 heterochronic miRNA gene causes dendritic misplacement of RAB-3 presynaptic markers that colocalize with muscle postsynaptic terminals ectopically. We propose that heterochronic genes are components in the UNC-6/Netrin pathway of synaptic polarity of these neurons. These findings highlight the role of heterochronic genes in postmitotic neuronal patterning events.


Assuntos
Caenorhabditis elegans/metabolismo , Polaridade Celular , Neurônios Motores/metabolismo , Animais , Caenorhabditis elegans/genética , Polaridade Celular/genética , Regulação da Expressão Gênica/genética , Neurônios Motores/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
2.
Nature ; 466(7310): 1069-75, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20740007

RESUMO

The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27-33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43-ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Sequências Repetitivas de Aminoácidos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Ataxinas , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/toxicidade , Drosophila/efeitos dos fármacos , Drosophila/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Peptídeos/química , Fatores de Risco , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adulto Jovem
3.
Methods ; 53(3): 238-45, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21115123

RESUMO

The budding yeast Saccharomyces cerevisiae is an emerging tool for investigating the molecular pathways that underpin several human neurodegenerative disorders associated with protein misfolding. Amyotrophic lateral sclerosis (ALS) is a devastating adult onset neurodegenerative disease primarily affecting motor neurons. The protein TDP-43 has recently been demonstrated to play an important role in the disease, however, the mechanisms by which TDP-43 contributes to pathogenesis are unclear. To explore the mechanistic details that result in aberrant accumulation of TDP-43 and to discover potential strategies for therapeutic intervention, we employed a yeast TDP-43 proteinopathy model system. These studies allowed us to determine the regions of TDP-43 required for aggregation and toxicity and to define the effects of ALS-linked mutant forms of TDP-43. We have also been able to harness the power of yeast genetics to identify potent modifiers of TDP-43 toxicity using high-throughput yeast genetic screens. Here, we describe the methods and approaches that we have used in order to gain insight into TDP-43 biology and its role in disease. These approaches are readily adaptable to other neurodegenerative disease proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/patologia , Deleção de Genes , Testes Genéticos , Humanos , Corpos de Inclusão/metabolismo , Mutação de Sentido Incorreto , Organismos Geneticamente Modificados , Doença de Parkinson/patologia , Doenças Priônicas/patologia , Dobramento de Proteína
4.
Nat Struct Mol Biol ; 21(8): 712-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25038802

RESUMO

Myotonic dystrophy disorders are caused by expanded CUG repeats in noncoding regions. Here we used Caenorhabditis elegans expressing CUG repeats to identify genes that modulate the toxicity of such repeats. We identified 15 conserved genes that function as suppressors or enhancers of CUG repeat-induced toxicity and that modulate formation of nuclear foci by CUG-repeat RNA. These genes regulate CUG repeat-induced toxicity through distinct mechanisms including RNA export and clearance, thus suggesting that CUG-repeat toxicity is mediated by multiple pathways. A subset of the genes are also involved in other degenerative disorders. The nonsense-mediated mRNA decay (NMD) pathway has a conserved role in regulating CUG-repeat-RNA transcript levels and toxicity, and NMD recognition of toxic RNAs depends on 3'-untranslated-region GC-nucleotide content. Our studies suggest a broader surveillance role for NMD in which variations in this pathway influence multiple degenerative diseases.


Assuntos
Caenorhabditis elegans/genética , Genes de Helmintos , RNA de Helmintos/genética , Repetições de Trinucleotídeos , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Células Cultivadas , Sequência Conservada , Fibroblastos/metabolismo , Humanos , Locomoção , Músculos/anormalidades , Mutação , Distrofia Miotônica/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA de Helmintos/metabolismo
5.
Nat Genet ; 44(12): 1302-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23104007

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease primarily affecting motor neurons. Mutations in the gene encoding TDP-43 cause some forms of the disease, and cytoplasmic TDP-43 aggregates accumulate in degenerating neurons of most individuals with ALS. Thus, strategies aimed at targeting the toxicity of cytoplasmic TDP-43 aggregates may be effective. Here, we report results from two genome-wide loss-of-function TDP-43 toxicity suppressor screens in yeast. The strongest suppressor of TDP-43 toxicity was deletion of DBR1, which encodes an RNA lariat debranching enzyme. We show that, in the absence of Dbr1 enzymatic activity, intronic lariats accumulate in the cytoplasm and likely act as decoys to sequester TDP-43, preventing it from interfering with essential cellular RNAs and RNA-binding proteins. Knockdown of Dbr1 in a human neuronal cell line or in primary rat neurons is also sufficient to rescue TDP-43 toxicity. Our findings provide insight into TDP-43-mediated cytotoxicity and suggest that decreasing Dbr1 activity could be a potential therapeutic approach for ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Proteínas de Ligação a DNA/metabolismo , RNA Nucleotidiltransferases/antagonistas & inibidores , Esclerose Lateral Amiotrófica/genética , Animais , Células Cultivadas , Córtex Cerebral/enzimologia , Modelos Animais de Doenças , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Neurônios/enzimologia , RNA Nucleotidiltransferases/genética , Ratos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
6.
J Biol Chem ; 282(43): 31621-30, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17785456

RESUMO

The mechanisms that govern the formation of alpha-synuclein (alpha-syn) aggregates are not well understood but are considered a central event in the pathogenesis of Parkinson's disease (PD). A critically important modulator of alpha-syn aggregation in vitro is dopamine and other catechols, which can prevent the formation of alpha-syn aggregates in cell-free and cellular model systems. Despite the profound importance of this interaction for the pathogenesis of PD, the processes by which catechols alter alpha-syn aggregation are unclear. Molecular and biochemical approaches were employed to evaluate the mechanism of catechol-alpha-syn interactions and the effect on inclusion formation. The data show that the intracellular inhibition of alpha-syn aggregation requires the oxidation of catechols and the specific noncovalent interaction of the oxidized catechols with residues (125)YEMPS(129) in the C-terminal region of the protein. Cell-free studies using novel near infrared fluorescence methodology for the detection of covalent protein-ortho-quinone adducts showed that although covalent modification of alpha-syn occurs, this does not affect alpha-syn fibril formation. In addition, oxidized catechols are unable to prevent both thermal and acid-induced protein aggregation as well as fibrils formed from a protein that lacks a YEMPS amino acid sequence, suggesting a specific effect for alpha-syn. These results suggest that inappropriate C-terminal cleavage of alpha-syn, which is known to occur in vivo in PD brain or a decline of intracellular catechol levels might affect disease progression, resulting in accelerated alpha-syn inclusion formation and dopaminergic neurodegeneration.


Assuntos
Catecóis/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sistema Livre de Células , Técnica Indireta de Fluorescência para Anticorpo , Formazans/metabolismo , Vetores Genéticos , Humanos , Lentivirus/genética , Luz , Espectrometria de Massas , Neuroblastoma/patologia , Oxirredução , Plasmídeos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Espectrometria de Fluorescência , Transdução Genética , Transfecção , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA