Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39012743

RESUMO

Real-time continuous glucose monitoring (CGM), augmented with accurate glucose prediction, offers an effective strategy for maintaining blood glucose levels within a therapeutically appropriate range. This is particularly crucial for individuals with type 1 diabetes (T1D) who require long-term self-management. However, with extensive glycemic variability, developing a prediction algorithm applicable across diverse populations remains a significant challenge. Leveraging meta-learning for domain generalization, we propose GPFormer, a Transformer-based zero-shot learning method designed for multi-horizon glucose prediction. We developed GPFormer on the REPLACE-BG dataset, comprising 226 participants with T1D, and proceeded to evaluate its performance using three external clinical datasets with CGM data. These included the OhioT1DM dataset, a publicly available dataset including 12 T1D participants, as well as two proprietary datasets. The first proprietary dataset included 22 participants, while the second contained 45 participants, encompassing a diverse group with T1D, type 2 diabetes, and those without diabetes, including patients admitted to hospitals. These four datasets include both outpatient and inpatient settings, various intervention strategies, and demographic variability, which effectively reflect real-world scenarios of CGM usage. When compared with a group of machine learning baseline methods, GPFormer consistently demonstrated superior performance and achieved the lowest root mean square error for all the evaluated datasets up to a prediction horizon of two hours. These experimental results highlight the effectiveness and generalizability of the proposed model across a variety of populations, demonstrating its substantial potential to enhance glucose management in a wide range of practical clinical settings.

2.
Sci Rep ; 14(1): 16762, 2024 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034340

RESUMO

In the face of increasing antimicrobial tolerance and resistance there is a global obligation to optimise oral antimicrobial dosing strategies including narrow spectrum penicillins, such as penicillin-V. We conducted a randomised, crossover study in healthy volunteers to characterise the influence of probenecid on penicillin-V pharmacokinetics and estimate the pharmacodynamics against Streptococcus pneumoniae. Twenty participants took six doses of penicillin-V (250 mg, 500 mg or 750 mg four times daily) with and without probenecid. Total and free concentrations of penicillin-V and probenecid were measured at two timepoints. A pharmacokinetic model was developed, and the probability of target attainment (PTA) calculated. The mean difference (95% CI) between penicillin-V alone and in combination with probenecid for serum total and free penicillin-V concentrations was significantly different at both timepoints (total: 45 min 4.32 (3.20-5.32) mg/L p < 0.001, 180 min 2.2 (1.58-3.25) mg/L p < 0.001; free: 45 min 1.15 (0.88-1.42) mg/L p < 0.001, 180 min 0.5 (0.35-0.76) mg/L p < 0.001). There was no difference between the timepoints in probenecid concentrations. PTA analysis shows probenecid allows a fourfold increase in MIC cover. Addition of probenecid was safe and well tolerated. The data support further research into improved dosing structures for complex outpatient therapy and might also be used to address penicillin supply shortages.


Assuntos
Antibacterianos , Estudos Cross-Over , Penicilina V , Probenecid , Humanos , Probenecid/farmacocinética , Probenecid/farmacologia , Probenecid/administração & dosagem , Masculino , Adulto , Feminino , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Penicilina V/farmacocinética , Penicilina V/administração & dosagem , Streptococcus pneumoniae/efeitos dos fármacos , Adulto Jovem , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Voluntários Saudáveis , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
3.
Diabetes Technol Ther ; 25(6): 414-425, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37017468

RESUMO

Background: The Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) is a decision support system using the artificial intelligence technique of case-based reasoning to adapt and personalize insulin bolus doses. The integrated system comprises a smartphone application and clinical web portal. We aimed to assess the safety and efficacy of the ABC4D (intervention) compared with a nonadaptive bolus calculator (control). Methods: This was a prospective randomized controlled crossover study. Following a 2-week run-in period, participants were randomized to ABC4D or control for 12 weeks. After a 6-week washout period, participants crossed over for 12 weeks. The primary outcome was difference in % time in range (%TIR) (3.9-10.0 mmol/L [70-180 mg/dL]) change during the daytime (07:00-22:00) between groups. Results: Thirty-seven adults with type 1 diabetes on multiple daily injections of insulin were randomized, median (interquartile range [IQR]) age 44.7 (28.2-55.2) years, diabetes duration 15.0 (9.5-29.0) years, and glycated hemoglobin 61.0 (58.0-67.0) mmol/mol (7.7 [7.5-8.3]%). Data from 33 participants were analyzed. There was no significant difference in daytime %TIR change with ABC4D compared with control (median [IQR] +0.1 [-2.6 to +4.0]% vs. +1.9 [-3.8 to +10.1]%; P = 0.53). Participants accepted fewer meal dose recommendations in the intervention compared with control (78.7 [55.8-97.6]% vs. 93.5 [73.8-100]%; P = 0.009), with a greater reduction in insulin dosage from that recommended. Conclusion: The ABC4D is safe for adapting insulin bolus doses and provided the same level of glycemic control as the nonadaptive bolus calculator. Results suggest that participants did not follow the ABC4D recommendations as frequently as control, impacting its effectiveness. Clinical Trials Registration: clinicaltrials.gov NCT03963219 (Phase 5).


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Estudos Cross-Over , Glicemia , Inteligência Artificial , Estudos Prospectivos , Insulina/uso terapêutico , Insulina Regular Humana/uso terapêutico
4.
J Diabetes Sci Technol ; 16(1): 29-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861785

RESUMO

BACKGROUND: User-developed automated insulin delivery systems, also referred to as do-it-yourself artificial pancreas systems (DIY APS), are in use by people living with type 1 diabetes. In this work, we evaluate, in silico, the DIY APS Loop control algorithm and compare it head-to-head with the bio-inspired artificial pancreas (BiAP) controller for which clinical data are available. METHODS: The Python version of the Loop control algorithm called PyLoopKit was employed for evaluation purposes. A Python-MATLAB interface was created to integrate PyLoopKit with the UVa-Padova simulator. Two configurations of BiAP (non-adaptive and adaptive) were evaluated. In addition, the Tandem Basal-IQ predictive low-glucose suspend was used as a baseline algorithm. Two scenarios with different levels of variability were used to challenge the algorithms on the adult (n = 10) and adolescent (n = 10) virtual cohorts of the simulator. RESULTS: Both BiAP and Loop improve, or maintain, glycemic control when compared with Basal-IQ. Under the scenario with lower variability, BiAP and Loop perform relatively similarly. However, BiAP, and in particular its adaptive configuration, outperformed Loop in the scenario with higher variability by increasing the percentage time in glucose target range 70-180 mg/dL (BiAP-Adaptive vs Loop vs Basal-IQ) (adults: 89.9% ± 3.2%* vs 79.5% ± 5.3%* vs 67.9% ± 8.3%; adolescents: 74.6 ± 9.5%* vs 53.0% ± 7.7% vs 55.4% ± 12.0%, where * indicates the significance of P < .05 calculated in sequential order) while maintaining the percentage time below range (adults: 0.89% ± 0.37% vs 1.72% ± 1.26% vs 3.41 ± 1.92%; adolescents: 2.87% ± 2.77% vs 4.90% ± 1.92% vs 4.17% ± 2.74%). CONCLUSIONS: Both Loop and BiAP algorithms are safe and improve glycemic control when compared, in silico, with Basal-IQ. However, BiAP appears significantly more robust to real-world challenges by outperforming Loop and Basal-IQ in the more challenging scenario.


Assuntos
Diabetes Mellitus Tipo 1 , Pâncreas Artificial , Adolescente , Adulto , Algoritmos , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina
5.
Front Bioeng Biotechnol ; 10: 1015389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338121

RESUMO

Background and objective: Sub-therapeutic dosing of piperacillin-tazobactam in critically-ill patients is associated with poor clinical outcomes and may promote the emergence of drug-resistant infections. In this paper, an in silico investigation of whether closed-loop control can improve pharmacokinetic-pharmacodynamic (PK-PD) target attainment is described. Method: An in silico platform was developed using PK data from 20 critically-ill patients receiving piperacillin-tazobactam where serum and tissue interstitial fluid (ISF) PK were defined. Intra-day variability on renal clearance, ISF sensor error, and infusion constraints were taken into account. Proportional-integral-derivative (PID) control was selected for drug delivery modulation. Dose adjustment was made based on ISF sensor data with a 30-min sampling period, targeting a serum piperacillin concentration between 32 and 64 mg/L. A single tuning parameter set was employed across the virtual population. The PID controller was compared to standard therapy, including bolus and continuous infusion of piperacillin-tazobactam. Results: Despite significant inter-subject and simulated intra-day PK variability and sensor error, PID demonstrated a significant improvement in target attainment compared to traditional bolus and continuous infusion approaches. Conclusion: A PID controller driven by ISF drug concentration measurements has the potential to precisely deliver piperacillin-tazobactam in critically-ill patients undergoing treatment for sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA