Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(10): 5387-95, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22533675

RESUMO

Silver nanoparticles (AgNPs) are increasingly used as bacteriostatic agents to prevent microbial growth. AgNPs are manufactured with a variety of coatings, and their potential impacts on wastewater treatment in general are poorly understood. In the present study, Nitrosomonas europaea, a model ammonia oxidizing bacterium, was exposed to AgNPs with citrate, gum arabic (GA), and polyvinylpyrrolidone (PVP). GA and citrate AgNPs inhibited nitrification most strongly (67.9 ± 3.6% and 91.4 ± 0.2%, respectively at 2 ppm). Our data indicate that Ag(+) dissolution and colloid stability of AgNPs were the main factors in AgNP toxicity. In general, low amounts of dissolved Ag initially caused a post-transcriptional interruption of membrane-bound nitrifying enzyme function, reducing nitrification by 10% or more. A further increase in dissolved Ag resulted in heavy metal stress response (e.g., merA up-regulation) and ultimately led to membrane disruption. The highest effect on membrane disruption was observed for citrate AgNPs (64 ± 11% membranes compromised at 2 ppm), which had high colloidal stability. This study demonstrates that coating plays a very important role in determining Ag dissolution and ultimately toxicity to nitrifiers. More research is needed to characterize these parameters in complex growth media such as wastewater.


Assuntos
Ácido Cítrico/química , Goma Arábica/química , Nanopartículas Metálicas/química , Nitrificação/efeitos dos fármacos , Nitrosomonas europaea/efeitos dos fármacos , Povidona/química , Prata/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Cisteína/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Nanopartículas Metálicas/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Nitritos/análise , Nitrosomonas europaea/citologia , Nitrosomonas europaea/genética , Nitrosomonas europaea/ultraestrutura , RNA Ribossômico 16S/genética , Solubilidade/efeitos dos fármacos
2.
PLoS One ; 8(2): e57189, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468930

RESUMO

A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg(-1) soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles.


Assuntos
Ecossistema , Nanopartículas Metálicas , Prata/química , Biomassa , Microscopia Eletrônica de Transmissão , Plantas/metabolismo , Nitrato de Prata/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA