Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 30(2): 253-277, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38457212

RESUMO

Microstructure analysis via electron backscatter diffraction has become an indispensable tool in materials science and engineering. In order to interpret or predict the anisotropy in crystalline materials, the texture is assessed, e.g. via pole figure diagrams. To ensure a correct characterization, it is crucial to align the measured sample axes as closely as possible with the manufacturing process directions. However, deviations are inevitable due to sample preparation and manual measurement setup. Postprocessing is mostly done manually, which is tedious and operator-dependent. In this work, it is shown that the deviation can be calculated using the contour of the crystal orientations. This can also be utilized to define the axis symmetry of pole figure diagrams through an objective function, allowing for symmetric alignment by minimization. Experimental textures of extruded profiles and synthetically generated textures were used to demonstrate the general applicability of the method. It has proven to work excellently for deviations of up to 5∘, which are typical for careful manual sample preparation and mounting. While the performance of the algorithm is reduced with increasing misalignment, good results have also been obtained for deviations up to 15∘.

2.
Ultrasonics ; 145: 107453, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39260080

RESUMO

Standard ultrasonic thickness measurements require the sound velocity of the sample to be known and vice versa. We present a method, which we have termed combined mode local acoustic spectroscopy (CoMLAS) for simultaneously determining a plate's thickness and sound velocities without requiring such a priori knowledge. It is based on a combination of three guided wave modes sustained by a plate at discrete frequencies, which we generate and detect using laser ultrasound. We use a pulsed laser that is shaped into a periodic line pattern on the sample's surface to generate elastic waves and measure the response at the pattern's center with a vibrometer. The surface acoustic wave mode produces an interference peak in the response spectrum at the frequency corresponding to the wavelength matching the pattern line spacing. By limiting the total size of the excitation pattern, we can simultaneously generate two zero-group-velocity plate resonances, providing two additional peaks in the spectrum. The plate's local thickness and longitudinal and transverse sound velocities are calculated from the peak frequencies. We demonstrate the feasibility of CoMLAS on steel and aluminum sheets with a thickness of around 2mm by resolving thickness steps and temperature-induced changes in the sound velocities. Using numerical simulations and control experiments, we provide insights into the method's accuracy and limitations. The choice of excitation pattern, the method's sensitivity, and the influence of sample inhomogeneity and anisotropy are discussed. CoMLAS does not require scanning mechanics and provides local plate properties. The results shown are achieved with low-energy lasers and signal averaging. Considerations on signal-to-noise ratio indicate that a realization with available lasers of higher energy will enable single-shot measurements. This qualifies the method for use on moving samples in an industrial environment.

3.
Materials (Basel) ; 14(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34576661

RESUMO

The low mass and high specific stiffness of Mg alloys make them particularly interesting as means of transportation. Due to further desirable properties, such as good machinability and excellent castability, Mg alloys have gained acceptance as castings in high-volume applications, such as gearbox housings and automotive steering wheels. However, in forming processes, such as extrusion and forging, Mg alloys find little to no industrial use at the moment. The reasons for this are their poor formability, which is reflected in limited processing speeds and low ductility, and their modest mechanical performance, compared to competing materials, such as Al alloys and high-strength steels. Much research is being conducted worldwide on high-strength Mg alloys, most of which rely on high levels of rare earths, making these materials both ecologically and economically questionable. Here, it is shown that high yield strengths (>300 MPa) can be achieved in the Mg-Al-Ca system while maintaining good ductility, using only low-cost elements. The investigations have shown that these properties can be adjusted over broad alloy compositions, which greatly simplifies both the processing and recyclability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA