Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Biol ; 22(1): 142, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926759

RESUMO

BACKGROUND: The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. RESULTS: To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. CONCLUSIONS: We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.


Assuntos
Camundongos Knockout , Vesículas Sinápticas , Animais , Camundongos , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Biol Res ; 57(1): 17, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664786

RESUMO

BACKGROUND: Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer. Steamer mRNA levels and gene copy number correlates with DN and can be used as a marker of the disease. So far, the only mollusk where a retrotransposon expression relates to DN is Mya arenaria. On the other hand, it has been reported that the Chilean blue mussel Mytilus chilensis can also suffers DN. Our aim was to identify retrotransposons in Mytilus chilensis and to study their expression levels in the context of disseminated neoplasia. RESULTS: Here we show that 7.1% of individuals collected in August 2018, from two farming areas, presents morphological characteristics described in DN. Using Steamer sequence to interrogate the transcriptome of M. chilensis we found two putative retrotransposons, named Steamer-like elements (MchSLEs). MchSLEs are present in the genome of M. chilensis and MchSLE1 is indeed an LTR-retrotransposon. Neither expression, nor copy number of the reported MchSLEs correlate with DN status but both are expressed at different levels among individual animals. We also report that in cultured M. chilensis haemocytes MchSLEs1 expression can be induced by bromodeoxyuridine. CONCLUSIONS: We conclude that SLEs present in Mytilus chilensis are differentially expressed among individuals and do not correlate with disseminated neoplasia. Treatment of haemocytes with a stressor like bromodeoxyuridine induces expression of MchSLE1 suggesting that in Mytilus chilensis environmental stressors can induce activation of LTR-retrotransposon.


Assuntos
Mytilus , Retroelementos , Animais , Mytilus/genética , Retroelementos/genética , Chile
3.
J Virol ; 95(15): e0017021, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980598

RESUMO

Murine leukemia virus (MLV) requires the infected cell to divide to access the nucleus to integrate into the host genome. It has been determined that MLV uses the microtubule and actin network to reach the nucleus at the early stages of infection. Several studies have shown that viruses use the dynein motor protein associated with microtubules for their displacement. We have previously reported that dynein light-chain roadblock type 2 (Dynlrb2) knockdown significantly decreases MLV infection compared to nonsilenced cells, suggesting a functional association between this dynein light chain and MLV preintegration complex (PIC). In this study, we aimed to determine if the dynein complex Dynlrb2 subunit plays an essential role in the retrograde transport of MLV. For this, an MLV mutant containing the green fluorescent protein (GFP) fused to the viral protein p12 was used to assay the PIC localization and speed in cells in which the expression of Dynlrb2 was modulated. We found a significant decrease in the arrival of MLV PIC to the nucleus and a reduced net speed of MLV PICs when Dynlrb2 was knocked down. In contrast, an increase in nuclear localization was observed when Dynlrb2 was overexpressed. Our results suggest that Dynlrb2 plays an essential role in MLV retrograde transport. IMPORTANCE Different viruses use different components of cytoplasmic dynein complex to traffic to their replication site. We have found that murine leukemia virus (MLV) depends on dynein light-chain Dynlrb2 for infection, retrograde traffic, and nuclear entry. Our study provides new information regarding the molecular requirements for retrograde transport of MLV preintegration complex and demonstrates the essential role of Dynlrb2 in MLV infection.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Dineínas do Citoplasma/genética , Dineínas/metabolismo , Vírus da Leucemia Murina/crescimento & desenvolvimento , Replicação Viral/genética , Células 3T3 , Transporte Ativo do Núcleo Celular/genética , Animais , Linhagem Celular , Núcleo Celular/virologia , Dineínas/genética , Produtos do Gene gag/genética , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Camundongos , Microtúbulos/metabolismo
4.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31217242

RESUMO

Sequences derived from parvoviruses (family Parvoviridae) are relatively common in animal genomes, but the functional significance of these endogenous parvoviral element (EPV) sequences remains unclear. In this study, we used a combination of in silico and molecular biological approaches to investigate a fusion gene carried by guinea pigs (genus Cavia) that is partially derived from an EPV. This gene, named enRep-M9l, encodes a predicted polypeptide gene product comprising a partial myosin9-like (M9l) gene fused to a 3' truncated, EPV-encoded replicase. We examined the genomic and phylogenetic characteristics of the EPV locus (enRep) that encodes the viral portions of enRep-M9l, revealing that it derives from an ancient dependoparvovirus (genus Dependoparvovirus) that was incorporated into the guinea pig germ line between approximately 22 and 35 million years ago (MYA). Despite these ancient origins, the regions of the enRep locus that are expressed in the enRep-M9l gene are conserved across multiple species in the family Caviidae (guinea pigs and cavies), consistent with a potential function at the amino acid level. Using molecular biological approaches, we further demonstrated that (i) enRep-M9l mRNA is broadly transcribed in guinea pig cells, (ii) the cloned enRep-M9l transcript can express a protein of the expected size in guinea pig cells in vitro, and (iii) the expressed protein localizes to the cytosol. Our findings demonstrate that, consistent with a functional role, the enRep-M9l fusion gene is evolutionarily conserved, broadly transcribed, and capable of expressing protein.IMPORTANCE DNA from viruses has been "horizontally transferred" to mammalian genomes during evolution, but the impact of this process on mammalian biology remains poorly understood. The findings of our study indicate that a novel gene has evolved in guinea pigs through fusion of host and virus genes.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Miosinas/genética , Infecções por Parvoviridae/virologia , Parvovirus/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , DNA Polimerase Dirigida por DNA/metabolismo , Evolução Molecular , Células Germinativas/virologia , Cobaias , Miosinas/metabolismo , Infecções por Parvoviridae/metabolismo , Parvovirus/genética , Filogenia , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250122

RESUMO

How murine leukemia virus (MLV) travels from the cell membrane to the nucleus and the mechanism for nuclear entry of MLV DNA in dividing cells still remain unclear. It seems likely that the MLV preintegration complex (PIC) interacts with cellular proteins to perform these tasks. We recently published that the microtubule motor cytoplasmic dynein complex and its regulator proteins interact with the MLV PIC at early times of infection, suggesting a functional interaction between the incoming viral particles, the dynein complex, and dynein regulators. To better understand the role of the dynein complex in MLV infection, we performed short hairpin RNA (shRNA) screening of the dynein light chains on MLV infection. We found that silencing of a specific light chain of the cytoplasmic dynein complex, DYNLRB2, reduced the efficiency of infection by MLV reporter viruses without affecting HIV-1 infection. Furthermore, the overexpression of DYNLRB2 increased infection by MLV. We conclude that the DYNLRB2 light chain of the cytoplasmic dynein complex is an important and specific piece of the host machinery needed for MLV infection.IMPORTANCE Retroviruses must reach the chromatin of their host to integrate their viral DNA, but first they must get into the nucleus. The cytoplasm is a crowded environment in which simple diffusion is slow, and thus viruses utilize retrograde transport along the microtubule network, mediated by the dynein complex. Different viruses use different components of this multisubunit complex. We have found that murine leukemia virus (MLV) associates functionally and specifically with the dynein light chain DYNLRB2, which is required for infection. Our study provides more insight into the molecular requirements for retrograde transport of the MLV preintegration complex and demonstrates, for the first time, a role for DYNLRB2 in viral infection.


Assuntos
Dineínas do Citoplasma/genética , Dineínas do Citoplasma/fisiologia , Interações Hospedeiro-Patógeno , Vírus da Leucemia Murina/fisiologia , Animais , Transporte Biológico , Linhagem Celular , Núcleo Celular/virologia , Células HEK293 , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Microtúbulos/virologia , Células NIH 3T3
6.
Cell Microbiol ; 19(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643392

RESUMO

Retroviruses are obligate intracellular parasites of eukaryotic cells. After reverse transcription, the viral DNA contained in the preintegration complex is delivered to the nucleus of the host cell, where it integrates. Before reaching the nucleus, the incoming particle and the preintegration complex must travel throughout the cytoplasm. Likewise, the newly synthesized viral proteins and viral particles must transit the cytoplasm during exit. The cytoplasm is a crowded environment, and simple diffusion is difficult. Therefore, viruses have evolved to utilize the cellular mechanisms of movement through the cytoplasm, where microtubules are the roads, and the ATP-dependent motors dynein and kinesin are the vehicles for retrograde and anterograde trafficking. This review will focus on how different retroviruses (Mazon-Pfizer monkey virus, prototype foamy virus, bovine immunodeficiency virus, human immunodeficiency virus type 1, and murine leukemia virus) have subjugated the microtubule-associated motor proteins for viral replication. Although there have been advances in our understanding of how retroviruses move along microtubules, the strategies are different among them. Thus, a better understanding of the mechanisms used by each retrovirus to functionally subvert microtubule motor proteins will provide important clues in the design of new antiretroviral drugs that can specifically disrupt intracellular viral trafficking.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Retroviridae/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA Viral/genética , Humanos , Transporte Proteico/fisiologia , Retroviridae/crescimento & desenvolvimento
7.
J Virol ; 90(15): 6896-6905, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194765

RESUMO

UNLABELLED: During the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway. IMPORTANCE: Retroviruses must access the chromatin of host cells to integrate the viral DNA, but before this crucial event, they must reach the nucleus. The movement through the cytoplasm-a crowded environment where diffusion is slow-is thought to utilize retrograde transport along the microtubule network by the dynein complex. Different viruses use different components of this multisubunit complex. We found that the preintegration complex of murine leukemia virus (MLV) interacts with the dynein complex and that regulators of this complex are essential for infection. Our study provides the first insight into the requirements for retrograde transport of the MLV preintegration complex.


Assuntos
Dineínas/metabolismo , Vírus da Leucemia Murina/fisiologia , Leucemia Experimental/virologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia , Animais , Genoma Viral , Leucemia Experimental/metabolismo , Camundongos , Células NIH 3T3 , Infecções por Retroviridae/metabolismo , Infecções Tumorais por Vírus/metabolismo
8.
Mol Cell ; 36(2): 279-89, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19854136

RESUMO

A genetic screen previously identified the N-terminal 91 amino acids of the eukaryotic initiation factor 3 subunit f (N91-eIF3f) as a potent inhibitor of HIV-1 replication. Overexpression of N91-eIF3f or full-length eIF3f reduced the level of HIV-1 mRNAs in the infected cell. Here we show that N91-eIF3f and eIF3f act by specifically blocking the 3' end processing of the HIV-1 pre-mRNA both in vivo and in vitro. Furthermore, the results suggest that eIF3f mediates this restriction of HIV-1 expression through the previously unsuspected involvement of a set of factors that includes eIF3f, the SR protein 9G8, and the cyclin-dependent kinase 11 (CDK11). eIF3f affects HIV-1 3' end processing by modulating the sequence-specific recognition of the HIV-1 pre-mRNA by 9G8.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , HIV-1/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Processamento de Terminações 3' de RNA/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Extratos Celulares , Núcleo Celular/metabolismo , Fator de Iniciação 3 em Eucariotos/química , Repetição Terminal Longa de HIV/genética , HIV-1/fisiologia , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares , Poli A/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina , Replicação Viral
9.
Biol Res ; 50(1): 29, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927446

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1-3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus-brain areas that are relevant to OCD. RESULTS: Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. CONCLUSIONS: Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Animais , Modelos Animais de Doenças , Transportador 3 de Aminoácido Excitatório/genética , Genótipo , Ácido Glutâmico/genética , Heterozigoto , Masculino , Camundongos , Transtorno Obsessivo-Compulsivo/genética
10.
Proc Natl Acad Sci U S A ; 111(39): 14175-80, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25201971

RESUMO

Bivalve mollusks of the North Atlantic, most prominently the soft shell clam Mya arenaria, are afflicted with an epidemic transmissible disease of the circulatory system closely resembling leukemia. The disease is characterized by a dramatic expansion of blast-like cells in the hemolymph with high mitotic index. Examination of hemolymph of diseased clams revealed high levels of reverse transcriptase activity, the hallmark of retroviruses and retroelements. By deep sequencing of RNAs from hemolymph, we identified transcripts of a novel retroelement, here named Steamer. The DNA of the element is marked by long terminal repeats and encodes a single large protein with similarity to mammalian retroviral Gag-Pol proteins. Steamer mRNA levels were specifically elevated in diseased hemocytes, and high expression was correlated with disease status. DNA copy number per genome was present at enormously high levels in diseased hemocytes, indicative of extensive reverse transcription and retrotransposition. Steamer activation in M. arenaria is an example of a catastrophic induction of genetic instability that may initiate or advance the course of leukemia.


Assuntos
Hemócitos/metabolismo , Mya/genética , Retroelementos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA/genética , Dosagem de Genes , Neoplasias Hematológicas/genética , Hemolinfa/citologia , Hemolinfa/metabolismo , Dados de Sequência Molecular , Mya/citologia , Mya/metabolismo , Filogenia , RNA/genética , Ativação Transcricional
11.
J Virol ; 88(20): 12158-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25078696

RESUMO

We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver.


Assuntos
Chinchila/genética , Genoma , Parvovirus/genética , Sequência de Aminoácidos , Animais , Chinchila/virologia , Dados de Sequência Molecular , Parvovirus/classificação , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
12.
Annu Rev Virol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848600

RESUMO

Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.

13.
Viruses ; 16(3)2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543768

RESUMO

LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.


Assuntos
Sítios Internos de Entrada Ribossomal , Mytilus , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Retroelementos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Regiões 5' não Traduzidas , Mytilus/genética , Mytilus/metabolismo , Biossíntese de Proteínas
14.
Retrovirology ; 10: 10, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23369348

RESUMO

BACKGROUND: TRIM5α is a member of the tripartite motif family of proteins that restricts retroviral infection in a species-specific manner. The restriction requires an interaction between the viral capsid lattice and the B30.2/SPRY domain of TRIM5α. Previously, we determined that two SUMO interacting motifs (SIMs) present in the B30.2/SPRY domain of human TRIM5α (huTRIM5α) were important for the restriction of N-tropic Murine Leukemia Virus. Here, we examined whether SUMO expression and the SIM1 and SIM2 motifs in rhesus monkey TRIM5α (rhTRIM5α) are similarly important for Human Immunodeficiency Type 1 (HIV-) restriction. RESULTS: We found that mutation of SIM1 and SIM2 of rhTRIM5α abolished the restriction of HIV-1 virus. Further, knockdown of SUMO-1 in rhTRIM5α expressing cells abolished restriction of HIV-1. These results may be due, in part, to the ability of SUMO-1 to stabilize rhTRIM5α protein expression, as SUMO-1 knockdown increased rhTRIM5α turnover and the mutations in SIM1 and SIM2 led to more rapid degradation than the wild type protein. The NF-κB signaling ability of rhTRIM5α was also attenuated by SUMO-1 knockdown. Finally, upon inhibition of CRM1-dependent nuclear export with Leptomycin B (LMB), wild type rhTRIM5α localized to SUMO-1 bodies in the nucleus, while the SIM1 and SIM2 mutants did not localize to SUMO-1. CONCLUSIONS: Our results suggest that the rhTRIM5α B30.2/SPRY domain is not only important for the recognition of the HIV-1 CA, but it is also important for its association with SUMO-1 or SUMO-1 modified proteins. These interactions help to maintain TRIM5α protein levels and its nuclear localization into specific nuclear bodies.


Assuntos
HIV-1/imunologia , Proteínas/imunologia , Proteínas/metabolismo , Proteína SUMO-1/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Técnicas de Silenciamento de Genes , Humanos , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteína SUMO-1/genética , Ubiquitina-Proteína Ligases
15.
PLoS Pathog ; 7(4): e1002019, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21490953

RESUMO

Human TRIM5α potently restricts particular strains of murine leukemia viruses (the so-called N-tropic strains) but not others (the B- or NB-tropic strains) during early stages of infection. We show that overexpression of SUMO-1 in human 293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1 overexpression. The block occurred prior to reverse transcription and could be abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral effects, and this loss of restriction could be restored by expression of a human TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of the TRIM5α consensus SUMO conjugation site did not affect the antiviral activity of TRIM5α in any of the cell types tested. Mutation of the SIM consensus sequences, however, abolished TRIM5α antiviral activity against N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation of CA, are required for restriction. We propose that at least a portion of the antiviral activity of TRIM5α is mediated through the binding of its SIMs to SUMO-conjugated CA.


Assuntos
Motivos de Aminoácidos , Proteínas de Transporte/metabolismo , Vírus da Leucemia Murina de Moloney/patogenicidade , Proteína SUMO-1/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Restrição Antivirais , Capsídeo/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes gag , Humanos , Camundongos , Dados de Sequência Molecular , RNA Interferente Pequeno , Proteína SUMO-1/genética , Sumoilação/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
16.
Front Cell Dev Biol ; 11: 1227723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538398

RESUMO

Neurodevelopmental disorders have been associated with genetic mutations that affect cellular function, including chromatin regulation and epigenetic modifications. Recent studies in humans have identified mutations in KMT2C, an enzyme responsible for modifying histone tails and depositing H3K4me1 and H3K4me3, as being associated with Kleefstra syndrome 2 and autism spectrum disorder (ASD). However, the precise role of KMT2C mutations in brain disorders remains poorly understood. Here we employed CRISPR/Cas9 gene editing to analyze the effects of KMT2C brain specific knockout on animal behavior. Knocking out KMT2C expression in cortical neurons and the mouse brain resulted in decreased KMT2C levels. Importantly, KMT2C brain specific knockout animals exhibited repetitive behaviors, social deficits, and intellectual disability resembling ASD. Our findings shed light on the involvement of KMT2C in neurodevelopmental processes and establish a valuable model for elucidating the cellular and molecular mechanisms underlying KMT2C mutations and their relationship to Kleefstra syndrome 2 and ASD.

17.
Viruses ; 15(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515112

RESUMO

Endogenous viral elements (EVEs) are genomic DNA sequences derived from viruses. Some EVEs have open reading frames (ORFs) that can express proteins with physiological roles in their host. Furthermore, some EVEs exhibit a protective role against exogenous viral infection in their host. Endogenous parvoviral elements (EPVs) are highly represented in mammalian genomes, and although some of them contain ORFs, their function is unknown. We have shown that the locus EPV-Dependo.43-ODegus, an EPV with an intact ORF, is transcribed in Octodon degus (degu). Here we examine the antiviral activity of the protein encoded in this EPV, named DeRep. DeRep was produced in bacteria and used to generate antibodies that recognize DeRep in western blots of degu tissue. To test if DeRep could protect against exogenous parvovirus, we challenged cells with the minute virus of mice (MVM), a model autonomous parvovirus. We observed that MVM protein expression, DNA damage induced by replication, viral DNA, and cytopathic effects are reduced when DeRep is expressed in cells. The results of this study demonstrate that DeRep is expressed in degu and can inhibit parvovirus replication. This is the first time that an EPV has been shown to have antiviral activity against an exogenous virus.


Assuntos
Infecções por Parvoviridae , Parvovirus , Vírus , Animais , Camundongos , Antivirais/farmacologia , Parvovirus/genética , Genoma , Vírus/genética , Mamíferos
18.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461727

RESUMO

VPS50, is an accessory protein, involved in the synaptic and dense core vesicle acidification and its alterations produce behavioral changes in C.elegans. Here, we produce the mosaic knock out (mKO) of VPS50 using CRISPR/Cas9 system in both cortical cultured neurons and whole animals to evaluate the effect of VPS50 in regulating mammalian brain function and behavior. While mKO of VPS50 does not change the number of synaptic vesicles, it produces a mislocalization of the V-ATPase pump that likely impact in vesicle acidification and vesicle content to impair synaptic and neuronal activity in cultured neurons. In mice, mKO of VPS50 in the hippocampus, alter synaptic transmission and plasticity, and generated robust cognitive impairments associate to memory formation. We propose that VPS50 is an accessory protein that aids the correct recruitment of the V-ATPase pump to synaptic vesicles, thus having a crucial role controlling synaptic vesicle acidification and hence synaptic transmission.

19.
Genes (Basel) ; 14(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37107634

RESUMO

The blue mussel Mytilus chilensis is an endemic and key socioeconomic species inhabiting the southern coast of Chile. This bivalve species supports a booming aquaculture industry, which entirely relies on artificially collected seeds from natural beds that are translocated to diverse physical-chemical ocean farming conditions. Furthermore, mussel production is threatened by a broad range of microorganisms, pollution, and environmental stressors that eventually impact its survival and growth. Herein, understanding the genomic basis of the local adaption is pivotal to developing sustainable shellfish aquaculture. We present a high-quality reference genome of M. chilensis, which is the first chromosome-level genome for a Mytilidae member in South America. The assembled genome size was 1.93 Gb, with a contig N50 of 134 Mb. Through Hi-C proximity ligation, 11,868 contigs were clustered, ordered, and assembled into 14 chromosomes in congruence with the karyological evidence. The M. chilensis genome comprises 34,530 genes and 4795 non-coding RNAs. A total of 57% of the genome contains repetitive sequences with predominancy of LTR-retrotransposons and unknown elements. Comparative genome analysis of M. chilensis and M. coruscus was conducted, revealing genic rearrangements distributed into the whole genome. Notably, transposable Steamer-like elements associated with horizontal transmissible cancer were explored in reference genomes, suggesting putative relationships at the chromosome level in Bivalvia. Genome expression analysis was also conducted, showing putative genomic differences between two ecologically different mussel populations. The evidence suggests that local genome adaptation and physiological plasticity can be analyzed to develop sustainable mussel production. The genome of M. chilensis provides pivotal molecular knowledge for the Mytilus complex.


Assuntos
Mytilus edulis , Mytilus , Animais , Mytilus/genética , Chile , Aquicultura , Cromossomos/genética
20.
Nat Cancer ; 4(11): 1561-1574, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783804

RESUMO

Transmissible cancers are infectious parasitic clones that metastasize to new hosts, living past the death of the founder animal in which the cancer initiated. We investigated the evolutionary history of a cancer lineage that has spread though the soft-shell clam (Mya arenaria) population by assembling a chromosome-scale soft-shell clam reference genome and characterizing somatic mutations in transmissible cancer. We observe high mutation density, widespread copy-number gain, structural rearrangement, loss of heterozygosity, variable telomere lengths, mitochondrial genome expansion and transposable element activity, all indicative of an unstable cancer genome. We also discover a previously unreported mutational signature associated with overexpression of an error-prone polymerase and use this to estimate the lineage to be >200 years old. Our study reveals the ability for an invertebrate cancer lineage to survive for centuries while its genome continues to structurally mutate, likely contributing to the evolution of this lineage as a parasitic cancer.


Assuntos
Mya , Neoplasias , Animais , Mya/genética , Instabilidade Genômica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA