Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 198: 106993, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972722

RESUMO

The treatment of bipolar disorder (BD) still remains a challenge. Melatonin (MLT), acting through its two receptors MT1 and MT2, plays a key role in regulating circadian rhythms which are dysfunctional in BD. Using a translational approach, we examined the implication and potential of MT1 receptors in the pathophysiology and psychopharmacology of BD. We employed a murine model of the manic phase of BD (Clock mutant (ClockΔ19) mice) to study the activation of MT1 receptors by UCM871, a selective partial agonist, in behavioral pharmacology tests and in-vivo electrophysiology. We then performed a high-resolution Nuclear Magnetic Resonance study on isolated membranes to characterize the molecular mechanism of interaction of UCM871. Finally, in a cohort of BD patients, we investigated the link between clinical measures of BD and genetic variants located in the MT1 receptor and CLOCK genes. We demonstrated that: 1) UCM871 can revert behavioral and electrophysiological abnormalities of ClockΔ19 mice; 2) UCM871 promotes the activation state of MT1 receptors; 3) there is a significant association between the number of severe manic episodes and MLT levels, depending on the genetic configuration of the MT1 rs2165666 variant. Overall, this work lends support to the potentiality of MT1 receptors as target for the treatment of BD.


Assuntos
Transtorno Bipolar , Melatonina , Psicofarmacologia , Humanos , Camundongos , Animais , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Melatonina/uso terapêutico , Melatonina/farmacologia , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/agonistas
2.
J Sci Food Agric ; 95(3): 490-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24862450

RESUMO

BACKGROUND: In the human diet, the consumption of fresh fruits and vegetables is important in maintaining good health and in preventing chronic diseases. It is known that plant-derived food is a powerful source of chemopreventive molecules, i.e. antioxidants, and spinach (Spinacia oleracea L., Chenopodiaceae) possesses a wide range of metabolites with such biological activity. Plant stress response could lead to the production of metabolites with high value for human health and this could be a tool to enhance the production of molecules with antioxidant activity in plants. RESULTS: Data reported in this paper confirm the antioxidant properties of spinach plants, and show a strong antiproliferative activity of leaf extract on HT-29 human cell line. Besides, the hypoxic stress seems to affect the pool of antioxidant molecules present in spinach leaves, as verified by means of HPLC-MS/MS analysis and the aluminium chloride and ABTS assays. CONCLUSION: Our findings represent a basis for improving the biological and pharmacological properties of spinach plants, including the use of different growth conditions to modulate the phytocomplex profile of spinach.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico , Oxigênio , Extratos Vegetais/uso terapêutico , Spinacia oleracea , Estresse Fisiológico , Adaptação Fisiológica , Adenocarcinoma/tratamento farmacológico , Agricultura/métodos , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Benzotiazóis/metabolismo , Neoplasias do Colo/tratamento farmacológico , Células HT29 , Humanos , Oxigênio/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Folhas de Planta , Spinacia oleracea/metabolismo , Ácidos Sulfônicos/metabolismo , Verduras
3.
Int J Mol Sci ; 15(3): 4565-82, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24642879

RESUMO

We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.


Assuntos
Acetilcolina/farmacologia , Tamanho Celular/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Ácido 2,4-Diclorofenoxiacético/farmacologia , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/genética , Ácidos Indolacéticos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Microscopia Confocal , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Transporte Proteico/efeitos dos fármacos , Protoplastos/citologia , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/metabolismo
4.
Plant Signal Behav ; 19(1): 2310974, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38345027

RESUMO

Plants have been observed to produce short ultrasonic emissions (UEs), and current research is focusing on developing noninvasive techniques for recording and analyzing these emissions. A standardized methodology has not been established yet; in this paper we suggest a cost-effective procedure for recording, extracting, and identifying plant UEs using only a single ultrasound microphone, a laptop computer, and open-source software.


Assuntos
Acústica , Ultrassom , Análise Custo-Benefício , Plantas
5.
Brain Sci ; 13(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190658

RESUMO

Background and Objectives: Alterations in hot cognition and in the tryptophan metabolism through serotonin (5-HT) and kynurenine (KYN) pathways have been associated with an increased risk of suicidal behavior. Here, we aim at probing the association between Stroop test performances and tryptophan pathway components in a sample of individuals with bipolar disorder (BD). Materials and Methods: We explored the association between the Emotion Inhibition Subtask (EIS) performances of the Brief Assessment of Cognition for Affective Disorders (BAC-A) and plasmatic levels of 5-hydroxytriptophan (5-HTP), 5-HT, KYN, 3-hydroxykynurenine (3-HK), quinolinic acid (QA), and kynurenic acid (KYNA) among subjects reporting lifetime suicide ideation (LSI) vs. non-LSI and subjects reporting lifetime suicide attempts (LSA) vs. non-LSA. Results: In a sample of 45 subjects with BD, we found a statistically significant different performance for LSA vs. non-LSA in the color naming (CN) and neutral words (NW) EIS subtasks. There was a significant association between CN performances and plasma 5-HTP levels among LSI and LSA subjects but not among non-LSI or non-LSA. Conclusions: In our sample, patients with LSA and LSI presented lower performances on some EIS subtasks compared to non-LSA and non-LSI. Moreover, we found an inverse correlation between plasma 5-HTP concentration and some EIS performances in LSA and LSI but not among non-LSA or non-LSI. This may represent an interesting avenue for future studies probing this complex association.

6.
Plants (Basel) ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145791

RESUMO

Plants have long been considered passive, static, and unchanging organisms, but this view is finally changing. More and more knowledge is showing that plants are aware of their surroundings, and they respond to a surprising variety of stimuli by modifying their growth and development. Plants extensively communicate with the world around them, above and below ground. Although communication through mycorrhizal networks and Volatile Organic Compounds has been known for a long time, acoustic perception and communication are somehow a final frontier of research. Perhaps surprisingly, plants not only respond to sound, they actually seem to emit sound as well. Roots emit audible clicks during growth, and sounds are emitted from xylem vessels, although the nature of these acoustic emissions still needs to be clarified. Even more interesting, there is the possibility that these sounds carry information with ecological implications, such as alerting insects of the hydration state of a possible host plant, and technological implications as well. Monitoring sound emissions could possibly allow careful monitoring of the hydration state of crops, which could mean significantly less water used during irrigation. This review summarizes the current knowledge on sound perception communication in plants and illustrates possible implications and technological applications.

7.
Plants (Basel) ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015403

RESUMO

The genus Brassica includes some of the most important vegetable and oil crops worldwide. Many Brassica seeds (which can show diagnostic characters useful for species identification) were recovered from two archaeological sites in northern Italy, dated from between the Middle Ages and the Renaissance. We tested the combined use of archaeobotanical keys, ancient DNA barcoding, and references to ancient herbarium specimens to address the issue of diagnostic uncertainty. An unequivocal conventional diagnosis was possible for much of the material recovered, with the samples dominated by five Brassica species and Sinapis. The analysis using ancient DNA was restricted to the seeds with a Brassica-type structure and deployed a variant of multiplexed tandem PCR. The quality of diagnosis strongly depended on the molecular locus used. Nevertheless, many seeds were diagnosed down to species level, in concordance with their morphological identification, using one primer set from the core barcode site (matK). The number of specimens found in the Renaissance herbaria was not high; Brassica nigra, which is of great ethnobotanical importance, was the most common taxon. Thus, the combined use of independent means of species identification is particularly important when studying the early use of closely related crops, such as Brassicaceae.

8.
Metabolites ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422266

RESUMO

The kynurenine pathway (KP) may play a role in the pathophysiology of bipolar disorder (BD). We conducted a genome-wide association study (GWAS) to identify genetic variants associated with the plasma levels of the metabolites of tryptophan (TRP) via the serotonin (5-HT) and kynurenine (KYN) pathways in 44 patients with BD and 45 healthy controls. We assessed whether variants that were differentially associated with metabolite levels based on the diagnostic status improved the prediction accuracy of BD using penalized regression approaches. We identified several genetic variants that were significantly associated with metabolites (5-HT, 5-hydroxytryptophan (5-HTP), TRP, and quinolinic acid (QA) or metabolite ratios (5-HTP/TRP and KYN/TRP) and for which the diagnostic status exerted a significant effect. The inclusion of genetic variants led to increased accuracy in the prediction of the BD diagnostic status. Specifically, we obtained an accuracy of 0.77 using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The predictors retained as informative in this model included body mass index (BMI), the levels of TRP, QA, and 5-HT, the 5-HTP/TRP ratio, and genetic variants associated with the levels of QA (rs6827515, rs715692, rs425094, rs4645874, and rs77048355) and TRP (rs292212) or the 5-HTP/TRP ratio (rs7902231). In conclusion, our study identified statistically significant associations between metabolites of TRP via the 5-HT and KYN pathways and genetic variants at the genome-wide level. The discriminative performance of penalized regression models incorporating clinical, genetic, and metabolic predictors warrants a follow-up analysis of this panel of determinants.

9.
J Clin Med ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566641

RESUMO

Bipolar disorder is associated with an inflammation-triggered elevated catabolism of tryptophan to the kynurenine pathway, which impacts psychiatric symptoms and outcomes. The data indicate that lithium exerts anti-inflammatory effects by inhibiting indoleamine-2,3-dioxygenase (IDO)-1 activity. This exploratory study aimed to investigate the tryptophan catabolism in individuals with bipolar disorder (n = 48) compared to healthy controls (n = 48), and the associations with the response to mood stabilizers such as lithium, valproate, or lamotrigine rated with the Retrospective Assessment of the Lithium Response Phenotype Scale (or the Alda scale). The results demonstrate an association of a poorer response to lithium with higher levels of kynurenine, kynurenine/tryptophan ratio as a proxy for IDO-1 activity, as well as quinolinic acid, which, overall, indicates a pro-inflammatory state with a higher degradation of tryptophan towards the neurotoxic branch. The treatment response to valproate and lamotrigine was not associated with the levels of the tryptophan metabolites. These findings support the anti-inflammatory properties of lithium. Furthermore, since quinolinic acid has neurotoxic features via the glutamatergic pathway, they also strengthen the assumption that the clinical drug response might be associated with biochemical processes. The relationship between the lithium response and the measurements of the tryptophan to the kynurenine pathway is of clinical relevance and may potentially bring advantages towards a personalized medicine approach to bipolar disorder that allows for the selection of the most effective mood-stabilizing drug.

10.
Foods ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572474

RESUMO

The Mediterranean-style diet is rich in fruit and vegetables and has a great impact on the prevention of major chronic diseases, such as cardiovascular diseases and cancer. In this work we investigated the ability of spinach extracts obtained by different extraction methods and of the single main components of the phytocomplex, alone or mixed, to modulate proliferation, antioxidant defense, and genotoxicity of HT29 human colorectal cells. Spinach extracts show dose-dependent activity, increasing the level of intracellular endogenous reactive oxygen species (ROS) when tested at higher doses. In the presence of oxidative stress, the activity is related to the oxidizing agent involved (H2O2 or menadione) and by the extraction method. The single components of the phytocomplex, alone or mixed, do not alter the intracellular endogenous level of ROS but again, in the presence of an oxidative insult, the modulation of antioxidant defense depends on the oxidizing agent used. The application of the phytocomplex extracts seem to be more effective than the application of the single phytocomplex components.

11.
Plant Signal Behav ; 16(8): 1919836, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33910490

RESUMO

In a very recent book called Sensory Biology of Plants, published by renowned publisher Springer Nature, the authors stated that the scientific literature gathered so far regarding knowledge around the field of Plant Acoustics allows us to divert the focus from the question "whether plants perceive sound" toward the questions "how and why they are doing it" Some phenomena are well known: roots perceive the sound of flowing water and display a sound-mediated growth toward the water source, while the buzz pollination process allows plants to minimize the pollen lost and maximize which is collected by true pollinators. But plants are far more perceptive and responsive to their environment than we generally consider them to be, and they are communicating far more information than we realize if we only took all their signals (VOCs, sound, exudates, etc.) into a greater picture. Could Volatile Organic Compounds (VOCs) be involved in mediating more responses than we imagine? VOC synthesis and release is known to be elicited also by electrical signals caused by mechanical stimuli, touching and wounding being among these, serving as info-chemicals in the communication between plants ("eavesdropping"), and within the organs of the same plant, in order for it to get synchronized with its surroundings. This paper is an overview of the discoveries around plant perception with a focus on the link between mechanical stimuli, as sound vibrations are, and changes in plant physiology leading to VOC emission.


Assuntos
Acústica , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Som , Compostos Orgânicos Voláteis/metabolismo , Percepção , Desenvolvimento Vegetal , Polinização , Água
12.
Plant Signal Behav ; 15(12): 1828674, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33048612

RESUMO

Life evolved in an acoustic world. Sound is perceived in different ways by the species that inhabit the Planet. Among organisms, also some algal species seem to respond to sound stimuli with increased cell growth and productivity. The purpose of this Short Communication is to provide an overview of the current literature about various organisms and sound, with particular attention to algal organisms, which, when subjected to sound applications, can change their metabolism accordingly.


Assuntos
Microalgas/fisiologia , Percepção , Plantas/metabolismo , Alga Marinha/fisiologia , Som , Animais , Humanos
13.
Biomolecules ; 9(2)2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30720723

RESUMO

Fruits and vegetables are a good source of potentially biologically active compounds. Their regular consumption in the human diet can help reduce the risk of developing chronic diseases such as cardiovascular diseases and cancer. Plants produce additional chemical substances when subject to abiotic stress or infected by microorganisms. The phytochemical profile of spinach leaves (Spinaciaoleracea L.), which is a vegetable with widely recognized health-promoting activity, has been affected by applying root hypoxic and re-oxygenation stress during plant growth. Leaf juice at different sampling times has been subject to liquid chromatography mass spectrometry (LC-MSn) analysis and tested on the human colorectal adenocarcinoma cell line HT29 by using the Comet assay. The cells were previously treated with H2O2 to simulate the presence of an oxidative stress (as in colon cancer condition) and the leaf juice application resulted in a significant antioxidant and protective in vitro effect. The duration of the hypoxic/re-oxygenation stress imposed on the plant reflects the antioxidant leaf juice content. After hypoxic stress (24 hours) and reoxygenation (2 hours), we show a decrease (50%) of the relative abundance of the principal identified antioxidant molecules but a higher antioxidant activity of the spinach juice on HT29 cells (20%). Data shows a complex relation between plant growing conditions and the modulation of secondary metabolites content in leaf juice that results in different chemo-protective activities in colon cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Sucos de Frutas e Vegetais/análise , Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Spinacia oleracea/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Físico-Química , Cromatografia Líquida , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Espectrometria de Massas , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
14.
Bioresour Technol ; 244(Pt 2): 1261-1268, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28483355

RESUMO

In this study a photobioreactor prototype is presented for the culture growth of microalgae model organism Neochloris oleoabundans by using chicken manure waste as feedstock along with the optimum combination of led light wavelengths and light intensity. Particularly interesting results are observed on the strains fed by chicken manure medium under the proper combination of red and blue LED light illumination, the microalgal growth resulted comparable with the strains fed by the costly commercial microalgal growth medium (BG 11 medium). Cell concentration, optical density, growth rate, cell size, total lipid and photosynthetic pigment content have been monitored during a time-course experiment. The data suggest that there are difficulties due to white light diffusion into the dark chicken medium, which leads to a generally lower intensity scattered along all wavelengths; blue or combined red and blue lights resulted in a higher irradiation density, affecting microalgae cell growth.


Assuntos
Clorófitas , Esterco , Fotobiorreatores , Animais , Biomassa , Galinhas , Luz , Microalgas
15.
Int Rev Cell Mol Biol ; 311: 231-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952919

RESUMO

Under anaerobic conditions, plants apply a wide spectrum of precise adaptive strategies responding to several critical challenges. The ability of efficiently sensing the oxygen presence demonstrates the existence of both direct and indirect ways of perception. The subsequent coordinate metabolic reassessment is currently under study. The complex molecular response implicates not only transcriptional and translational regulation of specific genes but also posttranscriptional and posttranslational regulatory mechanisms, each and all integrating the metabolic settings. Furthermore, the accumulation of typical metabolites during low oxygen stress condition is a key factor that suggests some critical topics in the regulation of metabolic pathways. Here, we summarize the main routes for adaptive behavior during oxygen depletion, from oxygen availability perception to recently discovered molecular mechanisms and metabolic adaptations.


Assuntos
Plantas/genética , Plantas/metabolismo , Adaptação Fisiológica , Anaerobiose , Modelos Biológicos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA