Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(6): 109866, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38840839

RESUMO

Methods for detecting proteins in small extracellular vesicles (sEVs) lack sensitivity and quantitative accuracy, missing clues about health and disease. Our study introduces the Nano-Extracellular Omics Sensing (NEXOS) platform, merging electrical (E-NEXOS) and optical detection (O-NEXOS). E-NEXOS determines the concentration of target sEV sub-types, and O-NEXOS quantifies the concentration of target protein epitopes (TEPs) on those TEVs. In this work, both technologies were compared to several sEV detection tools, showing superior detection limits for CD9+CD81+ and CD9+HER2+ sEVs. Furthermore, the additional information on TEVs and TEPs from bulk sEV samples, provided new phenotyping capabilities. We determined the average number of CD81 and HER2 proteins on CD9+ sEVs, a number which was later validated on spiked human plasma. These results highlight the compatibility of NEXOS with complex biofluids and, as importantly, hint at its many potential applications, ranging from basic research to the anticipated clinical translation of sEVs.

2.
Front Cell Dev Biol ; 11: 1282860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965578

RESUMO

Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in diverse clinical settings, largely due to their ability to produce extracellular vesicles (EVs). These EVs play a pivotal role in modulating immune responses, transforming pro-inflammatory cues into regulatory signals that foster a pro-regenerative milieu. Our previous studies identified the variability in the immunomodulatory effects of EVs sourced from primary human bone marrow MSCs as a consistent challenge. Given the limited proliferation of primary MSCs, protocols were advanced to derive MSCs from GMP-compliant induced pluripotent stem cells (iPSCs), producing iPSC-derived MSCs (iMSCs) that satisfied rigorous MSC criteria and exhibited enhanced expansion potential. Intriguingly, even though obtained iMSCs contained the potential to release immunomodulatory active EVs, the iMSC-EV products displayed batch-to-batch functional inconsistencies, mirroring those from bone marrow counterparts. We also discerned variances in EV-specific protein profiles among independent iMSC-EV preparations. Our results underscore that while iMSCs present an expansive growth advantage, they do not overcome the persistent challenge of functional variability of resulting MSC-EV products. Once more, our findings accentuate the crucial need for batch-to-batch functional testing, ensuring discrimination of effective and ineffective MSC-EV products for considered downstream applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA