Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 22(4): 704-16, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23139243

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by the expansion of CTG repeats in the 3' untranslated region of the DMPK gene. Several missplicing events and transcriptional alterations have been described in DM1 patients. A large number of these defects have been reproduced in animal models expressing CTG repeats alone. Recent studies have also reported miRNA dysregulation in DM1 patients. In this work, a Drosophila model was used to investigate miRNA transcriptome alterations in the muscle, specifically triggered by CTG expansions. Twenty miRNAs were differentially expressed in CTG-expressing flies. Of these, 19 were down-regulated, whereas 1 was up-regulated. This trend was confirmed for those miRNAs conserved between Drosophila and humans (miR-1, miR-7 and miR-10) in muscle biopsies from DM1 patients. Consistently, at least seven target transcripts of these miRNAs were up-regulated in DM1 skeletal muscles. The mechanisms involved in dysregulation of miR-7 included a reduction of its primary precursor both in CTG-expressing flies and in DM1 patients. Additionally, a regulatory role for Muscleblind (Mbl) was also suggested for miR-1 and miR-7, as these miRNAs were down-regulated in flies where Mbl had been silenced. Finally, the physiological relevance of miRNA dysregulation was demonstrated for miR-10, since over-expression of this miRNA in Drosophila extended the lifespan of CTG-expressing flies. Taken together, our results contribute to our understanding of the origin and the role of miRNA alterations in DM1.


Assuntos
MicroRNAs/genética , Distrofia Miotônica/genética , Expansão das Repetições de Trinucleotídeos , Animais , Sequência de Bases , Células Cultivadas , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Expectativa de Vida , Masculino , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 108(29): 11866-71, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730182

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by the expansion of noncoding CTG repeats in the dystrophia myotonica-protein kinase gene. Mutant transcripts form CUG hairpins that sequester RNA-binding factors into nuclear foci, including Muscleblind-like-1 protein (MBNL1), which regulate alternative splicing and gene expression. To identify molecules that target toxic CUG transcripts in vivo, we performed a positional scanning combinatorial peptide library screen using a Drosophila model of DM1. The screen identified a D-amino acid hexapeptide (ABP1) that reduced CUG foci formation and suppressed CUG-induced lethality and muscle degeneration when administered orally. Transgenic expression of natural, L-amino acid ABP1 analogues reduced CUG-induced toxicity in fly eyes and muscles. Furthermore, ABP1 reversed muscle histopathology and splicing misregulation of MBNL1 targets in DM1 model mice. In vitro, ABP1 bound to CUG hairpins and induced a switch to a single-stranded conformation. Our findings demonstrate that ABP1 shows antimyotonic dystrophy activity by targeting the core of CUG toxicity.


Assuntos
Distrofia Miotônica/genética , Oligopeptídeos/metabolismo , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila , Descoberta de Drogas , Camundongos , Músculos/metabolismo , Miotonina Proteína Quinase , Oligopeptídeos/genética , Biblioteca de Peptídeos , Proteínas de Ligação a RNA/genética
3.
Hereditas ; 143(2006): 117-22, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17362344

RESUMO

Motile mesodermal cells contribute several cell types to developing embryos. In Drosophila, blood cell precursors or prohemocytes, are first detected in the procephalic mesoderm by the expression of the GATA transcription factor Serpent. Once specified, a subset of prohemocytes migrate posteriorly to populate most of the embryo and further differentiate as plasmatocytes. Similarly, Drosophila nephrogenesis involves integration of posterior mesodermal cells into the Malpighian tubule primordia where these cells differentiate as stellate cells. Here we investigated the possibility that the immunoglobulin-domain protein Hibris and the GATA factor Serpent were co-expressed in motile mesodermal cells by using the hibris expression reporter P[w(+)]36.1 and antibody staining. We show that P[w(+)]36.1 reproduces the endogenous expression of hibris in several embryonic tissue types and organs, including mesectoderm, early mesoderm, pharyngeal musculature, hindgut, anal plates, posterior spiracles, and antennomaxillary complex. We find that both migrating prohemocytes and posterior mesodermal cells, before their integration into the Malpighian tubule primordia, simultaneously express the hibris reporter and Serpent. We also show that hibris function is not essential for prohemocyte migration out of the procephalic mesoderm NOR maintenance of Serpent expression in prohemocytes.


Assuntos
Movimento Celular , Proteínas de Drosophila/genética , Drosophila/embriologia , Fatores de Transcrição GATA/genética , Hematopoese , Túbulos de Malpighi/embriologia , Proteínas de Membrana/genética , Animais , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Membrana/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Organogênese
4.
PLoS One ; 3(2): e1595, 2008 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18270582

RESUMO

Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.


Assuntos
Expansão das Repetições de DNA , Repetições de Trinucleotídeos/efeitos dos fármacos , Repetições de Trinucleotídeos/fisiologia , Animais , Encéfalo , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Olho , Dosagem de Genes , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA
5.
PLoS One ; 3(2): e1613, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18286170

RESUMO

BACKGROUND: Muscleblind-like proteins (MBNL) have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D) are coded by the unique Drosophila muscleblind gene. METHODOLOGY/PRINCIPAL FINDINGS: We used evolutionary, genetic and cell culture approaches to study muscleblind (mbl) function in flies. The evolutionary study showed that the MblC protein isoform was readily conserved from nematods to Drosophila, which suggests that it performs the most ancestral muscleblind functions. Overexpression of MblC in the fly eye precursors led to an externally rough eye morphology. This phenotype was used in a genetic screen to identify five dominant suppressors and 13 dominant enhancers including Drosophila CUG-BP1 homolog aret, exon junction complex components tsunagi and Aly, and pro-apoptotic genes Traf1 and reaper. We further investigated Muscleblind implication in apoptosis and splicing regulation. We found missplicing of troponin T in muscleblind mutant pupae and confirmed Muscleblind ability to regulate mouse fast skeletal muscle Troponin T (TnnT3) minigene splicing in human HEK cells. MblC overexpression in the wing imaginal disc activated apoptosis in a spatially restricted manner. Bioinformatics analysis identified a conserved FKRP motif, weakly resembling a sumoylation target site, in the MblC-specific sequence. Site-directed mutagenesis of the motif revealed no change in activity of mutant MblC on TnnT3 minigene splicing or aberrant binding to CUG repeat RNA, but altered the ability of the protein to form perinuclear aggregates and enhanced cell death-inducing activity of MblC overexpression. CONCLUSIONS/SIGNIFICANCE: Taken together our genetic approach identify cellular processes influenced by Muscleblind function, whereas in vivo and cell culture experiments define Drosophila troponin T as a new Muscleblind target, reveal a potential involvement of MblC in programmed cell death and recognize the FKRP motif as a putative regulator of MblC function and/or subcellular location in the cell.


Assuntos
Processamento Alternativo , Apoptose , Proteínas de Drosophila/fisiologia , Proteínas de Ligação a RNA/fisiologia , Troponina T/genética , Motivos de Aminoácidos , Animais , Drosophila , Expansão das Repetições de Trinucleotídeos
6.
Differentiation ; 75(5): 427-40, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17309604

RESUMO

Drosophila Muscleblind (Mbl) proteins control terminal muscle and neural differentiation, but their molecular function has not been experimentally addressed. Such an analysis is relevant as the human Muscleblind-like homologs (MBNL1-3) are implicated in the pathogenesis of the inherited muscular developmental and degenerative disease myotonic dystrophy. The Drosophila muscleblind gene expresses four protein coding splice forms (mblA to mblD) that are differentially expressed during the Drosophila life cycle, and which vary markedly in their ability to rescue the embryonic lethal phenotype of muscleblind mutant flies. Analysis of muscleblind mutant embryos reveals misregulated alternative splicing of the transcripts encoding Z-band component alpha-Actinin, which can be replicated in human cells expressing a Drosophilaalpha-actinin minigene and epitope-tagged Muscleblind isoforms. MblC appreciably altered alpha-actinin splicing in this assay, whereas other isoforms had only a marginal or no effect, demonstrating functional specialization among Muscleblind proteins. To further analyze the molecular basis of these differences, we studied the subcellular localization of Muscleblind isoforms. Consistent with the splicing assay results, MblB and MblC were enriched in the nucleus while MblA was predominantly cytoplasmic. In myotonic dystrophy, transcripts bearing expanded non-coding CUG or CCUG repeats interfere with the function of human MBNL proteins. Co-expression of CUG repeat RNA with the alpha-actinin minigene altered splicing compared with that seen in muscleblind mutant embryos, indicating that CUG repeat expansion RNA also interferes with Drosophila muscleblind function. Moreover MblA, B, and C co-localize with CUG repeat RNA in nuclear foci in cell culture. Our observations indicate that Muscleblind isoforms perform different functions in vivo, that MblC controls muscleblind-dependent alternative splicing events, and establish the functional conservation between Muscleblind and MBNL proteins both over a physiological target (alpha-actinin) and a pathogenic one (CUG repeats).


Assuntos
Actinina/genética , Processamento Alternativo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Expansão das Repetições de Trinucleotídeos/fisiologia , Regiões 3' não Traduzidas/genética , Actinina/metabolismo , Animais , Sequência de Bases , Células COS , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Humanos , Rim/metabolismo , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Mutação/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
J Hered ; 97(3): 253-60, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16714427

RESUMO

It has become increasingly evident that eukaryotic cells produce RNA molecules from coding genes with constitutions other than those of typically spliced mRNA transcripts. Here we describe new cDNAs from the Drosophila melanogaster muscleblind (mbl) locus that identify two such atypical RNA molecules: RNAs containing an incomplete exon 2 tandem repetition (mblE2E2') or having exons with a different order compared to the corresponding genomic DNA (mblE2E3'E2'; exon scrambling). The existence of exon duplications and rearrangements in the genomic locus that might explain such cDNAs was ruled out by genomic Southern blotting and in silico analysis of the Drosophila genome sequence. The incomplete exon 2 tandem repetition was confirmed by sequencing reverse transcriptase-polymerase chain reaction (RT-PCR) products, rapid amplification of cDNA ends, and detection of a band consistent with cDNA sizes in total RNA northern blots. RT-PCRs with exon-specific primers downstream of exon 2 were unable to amplify products other than those expected from canonical mbl isoforms, thus indicating that no other exons were efficiently spliced downstream of exon 2. Moreover, mblE2E2' transcripts seem to be poorly polyadenylated, if at all, and behave aberrantly in a polyacrylamide gel electrophoresis (PAGE) mobility assay. Taken together, lack of polyadenylation, lack of downstream splicing events, small size of mblE2E2', and PAGE behavior all suggest that these noncanonical transcripts may be circular RNAs. The functional implications for these noncanonical transcripts are unclear. A developmental expression profile of mblE2E2' revealed an almost constant expression except during early embryogenesis and early adulthood. The protein putatively encoded is unlikely to be functional because an in-frame stop codon occurs almost immediately after the splice site. Such noncanonical transcripts have previously been observed in vertebrates, and these data provide the first experimental evidence for similar phenomena in invertebrates.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Proteínas Nucleares/genética , RNA Mensageiro/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Éxons , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poli A/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA