Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Am J Pathol ; 194(4): 562-573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37832870

RESUMO

Coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-ß1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-ß1 after MI. In patients with STEMI, there was a significant correlation (P = 0.003) between higher circulating TGF-ß1 levels at 24 hours after MI and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-ß1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-ß1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of inflammatory cytokines IL-1ß and chemokine (C-C motif) ligand 2 (>50% reduction, P = 0.038 and 0.0004, respectively) at 24 hours, and reduced scar size at 4 weeks (21% reduction, P = 0.015) after reperfusion. Furthermore, a low-fibrogenic mimic of TGF-ß1, secreted by the helminth parasite Heligmosomoides polygyrus, had an almost identical protective effect on injured mouse hearts. Finally, genetic studies indicated that this benefit was mediated by TGF-ß signaling in the vascular endothelium.


Assuntos
Helmintos , Infarto do Miocárdio com Supradesnível do Segmento ST , Animais , Humanos , Camundongos , Cicatriz/metabolismo , Helmintos/metabolismo , Miocárdio/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 43(8): 1384-1403, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288572

RESUMO

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by arteriovenous malformations and blood vessel enlargements. However, there are no effective drug therapies to combat arteriovenous malformation formation in patients with HHT. Here, we aimed to address whether elevated levels of ANG2 (angiopoietin-2) in the endothelium is a conserved feature in mouse models of the 3 major forms of HHT that could be neutralized to treat brain arteriovenous malformations and associated vascular defects. In addition, we sought to identify the angiogenic molecular signature linked to HHT. METHODS: Cerebrovascular defects, including arteriovenous malformations and increased vessel calibers, were characterized in mouse models of the 3 common forms of HHT using transcriptomic and dye injection labeling methods. RESULTS: Comparative RNA sequencing analyses of isolated brain endothelial cells revealed a common, but unique proangiogenic transcriptional program associated with HHT. This included a consistent upregulation in cerebrovascular expression of ANG2 and downregulation of its receptor Tyr kinase with Ig and EGF homology domains (TIE2/TEK) in HHT mice compared with controls. Furthermore, in vitro experiments revealed TEK signaling activity was hampered in an HHT setting. Pharmacological blockade of ANG2 improved brain vascular pathologies in all HHT models, albeit to varying degrees. Transcriptomic profiling further indicated that ANG2 inhibition normalized the brain vasculature by impacting a subset of genes involved in angiogenesis and cell migration processes. CONCLUSIONS: Elevation of ANG2 in the brain vasculature is a shared trait among the mouse models of the common forms of HHT. Inhibition of ANG2 activity can significantly limit or prevent brain arteriovenous malformation formation and blood vessel enlargement in HHT mice. Thus, ANG2-targeted therapies may represent a compelling approach to treat arteriovenous malformations and vascular pathologies related to all forms of HHT.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Animais , Camundongos , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/genética , Células Endoteliais/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Malformações Arteriovenosas/metabolismo , Fenótipo
3.
EMBO J ; 38(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737259

RESUMO

Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age-related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post-mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age-related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent-like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length-independent telomere damage in cardiomyocytes activates the classical senescence-inducing pathways, p21CIP and p16INK4a, and results in a non-canonical senescence-associated secretory phenotype, which is pro-fibrotic and pro-hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age-related myocardial dysfunction and in the wider setting to ageing in post-mitotic tissues.


Assuntos
Cardiomegalia/patologia , Senescência Celular , Dano ao DNA , Fibrose/patologia , Mitose , Miócitos Cardíacos/patologia , Encurtamento do Telômero , Envelhecimento , Animais , Cardiomegalia/etiologia , Feminino , Fibrose/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monoaminoxidase/fisiologia , Miócitos Cardíacos/metabolismo , Fenótipo , RNA/fisiologia , Ratos Sprague-Dawley , Telomerase/fisiologia
4.
FASEB J ; 35(5): e21604, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913566

RESUMO

Myocardial infarction leads to a rapid innate immune response that is ultimately required for repair of damaged heart tissue. We therefore examined circulating monocyte dynamics immediately after reperfusion of the culprit coronary vessel in STEMI patients to determine whether this correlated with level of cardiac injury. A mouse model of cardiac ischemia/reperfusion injury was subsequently used to establish the degree of monocyte margination to the coronary vasculature that could potentially contribute to the drop in circulating monocytes. We retrospectively analyzed blood samples from 51 STEMI patients to assess the number of non-classical (NC), classical, and intermediate monocytes immediately following primary percutaneous coronary intervention. Classical and intermediate monocytes showed minimal change. On the other hand, circulating numbers of NC monocytes fell by approximately 50% at 90 minutes post-reperfusion. This rapid decrease in NC monocytes was greatest in patients with the largest infarct size (P < .05) and correlated inversely with left ventricular function (r = 0.41, P = .04). The early fall in NC monocytes post-reperfusion was confirmed in a second prospective study of 13 STEMI patients. Furthermore, in a mouse cardiac ischemia model, there was significant monocyte adhesion to coronary vessel endothelium at 2 hours post-reperfusion pointing to a specific and rapid vessel margination response to cardiac injury. In conclusion, rapid depletion of NC monocytes from the circulation in STEMI patients following coronary artery reperfusion correlates with the level of acute cardiac injury and involves rapid margination to the coronary vasculature.


Assuntos
Traumatismos Cardíacos/sangue , Traumatismos Cardíacos/patologia , Monócitos/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Animais , Feminino , Traumatismos Cardíacos/etiologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
5.
Circ Res ; 127(9): 1122-1137, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32762495

RESUMO

RATIONALE: Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease caused by mutations in ENG, ALK1, or SMAD4. Since proteins from all 3 HHT genes are components of signal transduction of TGF-ß (transforming growth factor ß) family members, it has been hypothesized that HHT is a disease caused by defects in the ENG-ALK1-SMAD4 linear signaling. However, in vivo evidence supporting this hypothesis is scarce. OBJECTIVE: We tested this hypothesis and investigated the therapeutic effects and potential risks of induced-ALK1 or -ENG overexpression (OE) for HHT. METHODS AND RESULTS: We generated a novel mouse allele (ROSA26Alk1) in which HA (human influenza hemagglutinin)-tagged ALK1 and bicistronic eGFP expression are induced by Cre activity. We examined whether ALK1-OE using the ROSA26Alk1 allele could suppress the development of arteriovenous malformations (AVMs) in wounded adult skin and developing retinas of Alk1- and Eng-inducible knockout (iKO) mice. We also used a similar approach to investigate whether ENG-OE could rescue AVMs. Biochemical and immunofluorescence analyses confirmed the Cre-dependent OE of the ALK1-HA transgene. We could not detect any pathological signs in ALK1-OE mice up to 3 months after induction. ALK1-OE prevented the development of retinal AVMs and wound-induced skin AVMs in Eng-iKO as well as Alk1-iKO mice. ALK1-OE normalized expression of SMAD and NOTCH target genes in ENG-deficient endothelial cells (ECs) and restored the effect of BMP9 (bone morphogenetic protein 9) on suppression of phosphor-AKT levels in these endothelial cells. On the other hand, ENG-OE could not inhibit the AVM development in Alk1-iKO models. CONCLUSIONS: These data support the notion that ENG and ALK1 form a linear signaling pathway for the formation of a proper arteriovenous network during angiogenesis. We suggest that ALK1 OE or activation can be an effective therapeutic strategy for HHT. Further research is required to study whether this therapy could be translated into treatment for humans.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Malformações Arteriovenosas/prevenção & controle , Células Endoteliais/metabolismo , Telangiectasia Hemorrágica Hereditária/metabolismo , Receptores de Activinas Tipo II/deficiência , Receptores de Activinas Tipo II/genética , Alelos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Malformações Arteriovenosas/genética , Modelos Animais de Doenças , Endoglina/deficiência , Endoglina/genética , Endoglina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA não Traduzido , Receptores Notch/genética , Receptores Notch/metabolismo , Vasos Retinianos/anormalidades , Transdução de Sinais , Pele/irrigação sanguínea , Pele/lesões , Proteína Smad4/genética , Proteína Smad4/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Fator de Crescimento Transformador beta
6.
Circ Res ; 126(2): 243-257, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31805812

RESUMO

RATIONALE: ENG (endoglin) is a coreceptor for BMP (bone morphogenetic protein) 9/10 and is strongly expressed in endothelial cells. Mutations in ENG lead to the inherited vascular disorder hereditary hemorrhagic telangiectasia characterized by local telangiectases and larger arteriovenous malformations (AVMs); but how ENG functions to regulate the adult vasculature is not understood. OBJECTIVE: The goal of the work was to determine how ENG maintains vessel caliber in adult life to prevent AVM formation and thereby protect heart function. METHODS AND RESULTS: Genetic depletion of endothelial Eng in adult mice led to a significant reduction in mean aortic blood pressure. There was no evidence of hemorrhage, anemia, or AVMs in major organs to explain the reduced aortic pressure. However, large AVMs developed in the peripheral vasculature intimately associated with the pelvic cartilaginous symphysis-a noncapsulated cartilage with a naturally high endogenous expression of VEGF (vascular endothelial growth factor). The increased blood flow through these peripheral AVMs explained the drop in aortic blood pressure and led to increased cardiac preload, and high stroke volumes, ultimately resulting in high-output heart failure. Development of pelvic AVMs in this region of high VEGF expression occurred because loss of ENG in endothelial cells leads to increased sensitivity to VEGF and a hyperproliferative response. Development of AVMs and associated progression to high-output heart failure in the absence of endothelial ENG was attenuated by targeting VEGF signaling with an anti-VEGFR2 (VEGF receptor 2) antibody. CONCLUSIONS: ENG promotes the normal balance of VEGF signaling in quiescent endothelial cells to maintain vessel caliber-an essential function in conditions of increased VEGF expression such as local hypoxia or inflammation. In the absence of endothelial ENG, increased sensitivity to VEGF drives abnormal endothelial proliferation in local regions of high VEGF expression, leading to AVM formation and a rapid injurious impact on heart function.


Assuntos
Malformações Arteriovenosas/metabolismo , Endoglina/genética , Endotélio Vascular/metabolismo , Insuficiência Cardíaca/etiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Pressão Sanguínea , Proliferação de Células , Endoglina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Cardiovasc Drugs Ther ; 36(1): 187-196, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979174

RESUMO

Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the leading cause of death in 40% of individuals over 65 years old. Ageing is associated with both an increased prevalence of cardiovascular disease including heart failure, coronary artery disease, and myocardial infarction. Furthermore, ageing is associated with a poorer prognosis to these diseases. Genetic models allowing the elimination of senescent cells revealed that an accumulation of senescence contributes to the pathophysiology of cardiovascular ageing and promotes the progression of cardiovascular disease through the expression of a proinflammatory and profibrotic senescence-associated secretory phenotype. These studies have resulted in an effort to identify pharmacological therapeutics that enable the specific elimination of senescent cells through apoptosis induction. These senescent cell apoptosis-inducing compounds are termed senolytics and their potential to ameliorate age-associated cardiovascular disease is the focus of this review.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Senescência Celular/efeitos dos fármacos , Senoterapia/farmacologia , Idoso , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/fisiopatologia , Progressão da Doença , Humanos , Prognóstico , Fatores de Risco , Fenótipo Secretor Associado à Senescência/fisiologia
8.
Proc Natl Acad Sci U S A ; 116(36): 17800-17808, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431534

RESUMO

Endoglin (ENG) is a coreceptor of the transforming growth factor-ß (TGFß) family signaling complex, which is highly expressed on endothelial cells and plays a key role in angiogenesis. Its extracellular domain can be cleaved and released into the circulation as soluble ENG (sENG). High circulating levels of sENG contribute to the pathogenesis of preeclampsia (PE). Circulating bone morphogenetic protein 9 (BMP9), a vascular quiescence and endothelial-protective factor, binds sENG with high affinity, but how sENG participates in BMP9 signaling complexes is not fully resolved. sENG was thought to be a ligand trap for BMP9, preventing type II receptor binding and BMP9 signaling. Here we show that, despite cell-surface ENG being a dimer linked by disulfide bonds, sENG purified from human placenta and plasma from PE patients is primarily in a monomeric form. Incubating monomeric sENG with the circulating form of BMP9 (prodomain-bound form) in solution leads to the release of the prodomain and formation of a sENG:BMP9 complex. Furthermore, we demonstrate that binding of sENG to BMP9 does not inhibit BMP9 signaling. Indeed, the sENG:BMP9 complex signals with comparable potency and specificity to BMP9 on human primary endothelial cells. The full signaling activity of the sENG:BMP9 complex required transmembrane ENG. This study confirms that rather than being an inhibitory ligand trap, increased circulating sENG might preferentially direct BMP9 signaling via cell-surface ENG at the endothelium. This is important for understanding the role of sENG in the pathobiology of PE and other cardiovascular diseases.


Assuntos
Endoglina/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteínas da Gravidez/metabolismo , Transdução de Sinais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Placenta/patologia , Pré-Eclâmpsia/patologia , Gravidez
9.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445337

RESUMO

In fibrotic diseases, myofibroblasts derive from a range of cell types including endothelial-to-mesenchymal transition (EndMT). Increasing evidence suggests that miRNAs are key regulators in biological processes but their profile is relatively understudied in EndMT. In human umbilical vein endothelial cells (HUVEC), EndMT was induced by treatment with TGFß2 and IL1ß. A significant decrease in endothelial markers such as VE-cadherin, CD31 and an increase in mesenchymal markers such as fibronectin were observed. In parallel, miRNA profiling showed that miR-126-3p was down-regulated in HUVECs undergoing EndMT and over-expression of miR-126-3p prevented EndMT, maintaining CD31 and repressing fibronectin expression. EndMT was investigated using lineage tracing with transgenic Cdh5-Cre-ERT2; Rosa26R-stop-YFP mice in two established models of fibrosis: cardiac ischaemic injury and kidney ureteric occlusion. In both cardiac and kidney fibrosis, lineage tracing showed a significant subpopulation of endothelial-derived cells expressed mesenchymal markers, indicating they had undergone EndMT. In addition, miR-126-3p was restricted to endothelial cells and down-regulated in murine fibrotic kidney and heart tissue. These findings were confirmed in patient kidney biopsies. MiR-126-3p expression is restricted to endothelial cells and is down-regulated during EndMT. Over-expression of miR-126-3p reduces EndMT, therefore, it could be considered for miRNA-based therapeutics in fibrotic organs.


Assuntos
Transdiferenciação Celular/genética , Rim/patologia , MicroRNAs/fisiologia , Miocárdio/patologia , Animais , Células Cultivadas , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Fibrose/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Rim/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
10.
Angiogenesis ; 23(4): 559-566, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32506200

RESUMO

INTRODUCTION: Endoglin (ENG) forms a receptor complex with ALK1 in endothelial cells (ECs) to promote BMP9/10 signalling. Loss of function mutations in either ENG or ALK1 genes lead to the inherited vascular disorder hereditary haemorrhagic telangiectasia (HHT), characterised by arteriovenous malformations (AVMs). However, the vessel-specific role of ENG and ALK1 proteins in protecting against AVMs is unclear. For example, AVMs have been described to initiate in arterioles, whereas ENG is predominantly expressed in venous ECs. To investigate whether ENG has any arterial involvement in protecting against AVM formation, we specifically depleted the Eng gene in venous and capillary endothelium whilst maintaining arterial expression, and investigated how this affected the incidence and location of AVMs in comparison with pan-endothelial Eng knockdown. METHODS: Using the mouse neonatal retinal model of angiogenesis, we first established the earliest time point at which Apj-Cre-ERT2 activity was present in venous and capillary ECs but absent from arterial ECs. We then compared the incidence of AVMs following pan-endothelial or venous/capillary-specific ENG knockout. RESULTS: Activation of Apj-Cre-ERT2 with tamoxifen from postnatal day (P) 5 ensured preservation of arterial ENG protein expression. Specific loss of ENG expression in ECs of veins and capillaries led to retinal AVMs at a similar frequency to pan-endothelial loss of ENG. AVMs occurred in the proximal as well as the distal part of the retina consistent with a defect in vascular remodelling during maturation of the vasculature. CONCLUSION: Expression of ENG is not required in arterial ECs to protect against AVM formation.


Assuntos
Artérias/metabolismo , Malformações Arteriovenosas/sangue , Endoglina/sangue , Animais , Capilares/metabolismo , Endotélio/metabolismo , Camundongos Knockout , Retina/metabolismo , Retina/patologia , Veias/metabolismo
11.
Circulation ; 138(23): 2698-2712, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30571259

RESUMO

BACKGROUND: Hereditary Hemorrhagic Telangiectasia type 2 (HHT2) is an inherited genetic disorder characterized by vascular malformations and hemorrhage. HHT2 results from ACVRL1 haploinsufficiency, the remaining wild-type allele being unable to contribute sufficient protein to sustain endothelial cell function. Blood vessels function normally but are prone to respond to angiogenic stimuli, leading to the development of telangiectasic lesions that can bleed. How ACVRL1 haploinsufficiency leads to pathological angiogenesis is unknown. METHODS: We took advantage of Acvrl1+/- mutant mice that exhibit HHT2 vascular lesions and focused on the neonatal retina and the airway system after Mycoplasma pulmonis infection, as physiological and pathological models of angiogenesis, respectively. We elucidated underlying disease mechanisms in vitro by generating Acvrl1+/- mouse embryonic stem cell lines that underwent sprouting angiogenesis and performed genetic complementation experiments. Finally, HHT2 plasma samples and skin biopsies were analyzed to determine whether the mechanisms evident in mice are conserved in humans. RESULTS: Acvrl1+/- retinas at postnatal day 7 showed excessive angiogenesis and numerous endothelial "tip cells" at the vascular front that displayed migratory defects. Vascular endothelial growth factor receptor 1 (VEGFR1; Flt-1) levels were reduced in Acvrl1+/- mice and HHT2 patients, suggesting similar mechanisms in humans. In sprouting angiogenesis, VEGFR1 is expressed in stalk cells to inhibit VEGFR2 (Flk-1, KDR) signaling and thus limit tip cell formation. Soluble VEGFR1 (sVEGFR1) is also secreted, creating a VEGF gradient that promotes orientated sprout migration. Acvrl1+/- embryonic stem cell lines recapitulated the vascular anomalies in Acvrl1+/- (HHT2) mice. Genetic insertion of either the membrane or soluble form of VEGFR1 into the ROSA26 locus of Acvrl1+/- embryonic stem cell lines prevented the vascular anomalies, suggesting that high VEGFR2 activity in Acvrl1+/- endothelial cells induces HHT2 vascular anomalies. To confirm our hypothesis, Acvrl1+/- mice were infected by Mycoplasma pulmonis to induce sustained airway inflammation. Infected Acvrl1+/- tracheas showed excessive angiogenesis with the formation of multiple telangiectases, vascular defects that were prevented by VEGFR2 blocking antibodies. CONCLUSIONS: Our findings demonstrate a key role of VEGFR1 in HHT2 pathogenesis and provide mechanisms explaining why HHT2 blood vessels respond abnormally to angiogenic signals. This supports the case for using anti-VEGF therapy in HHT2.


Assuntos
Telangiectasia Hemorrágica Hereditária/patologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Adulto , Animais , Anticorpos/administração & dosagem , Anticorpos/imunologia , Malformações Arteriovenosas/etiologia , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Mycoplasma pulmonis/fisiologia , Neovascularização Fisiológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Vasos Retinianos/fisiologia , Transdução de Sinais , Pele/patologia , Telangiectasia Hemorrágica Hereditária/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/imunologia
12.
Nat Rev Mol Cell Biol ; 8(11): 857-69, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17895899

RESUMO

The intracellular mechanism of transforming growth factor-beta (TGFbeta) signalling via kinase receptors and SMAD effectors is firmly established, but recent studies of human cardiovascular syndromes such as Marfan syndrome and pre-eclampsia have refocused attention on the importance of regulating the availability of active extracellular TGFbeta. It seems that elastic extracellular matrix (ECM) components have a crucial role in controlling TGFbeta signalling, while soluble and membrane bound forms of TGFbeta co-receptors add further layers of regulation. Together, these extracellular interactions determine the final bioavailability of TGFbeta to vascular cells, and dysregulation is associated with an increasing number of vascular pathologies.


Assuntos
Vasos Sanguíneos/embriologia , Vasos Sanguíneos/patologia , Matriz Extracelular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Doenças Vasculares/metabolismo , Animais , Humanos
13.
Nature ; 499(7458): 306-11, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23868260

RESUMO

Aberrant neovascularization contributes to diseases such as cancer, blindness and atherosclerosis, and is the consequence of inappropriate angiogenic signalling. Although many regulators of pathogenic angiogenesis have been identified, our understanding of this process is incomplete. Here we explore the transcriptome of retinal microvessels isolated from mouse models of retinal disease that exhibit vascular pathology, and uncover an upregulated gene, leucine-rich alpha-2-glycoprotein 1 (Lrg1), of previously unknown function. We show that in the presence of transforming growth factor-ß1 (TGF-ß1), LRG1 is mitogenic to endothelial cells and promotes angiogenesis. Mice lacking Lrg1 develop a mild retinal vascular phenotype but exhibit a significant reduction in pathological ocular angiogenesis. LRG1 binds directly to the TGF-ß accessory receptor endoglin, which, in the presence of TGF-ß1, results in promotion of the pro-angiogenic Smad1/5/8 signalling pathway. LRG1 antibody blockade inhibits this switch and attenuates angiogenesis. These studies reveal a new regulator of angiogenesis that mediates its effect by modulating TGF-ß signalling.


Assuntos
Endotélio Vascular/metabolismo , Glicoproteínas/fisiologia , Neovascularização Retiniana/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Endotélio Vascular/citologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Neovascularização Retiniana/genética , Vasos Retinianos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
14.
PLoS Genet ; 12(3): e1005935, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010826

RESUMO

Endoglin is an auxiliary receptor for members of the TGF-ß superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-ß receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Eng(fl/fl)LysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Eng(fl/fl)LysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-ß1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.


Assuntos
Receptores de Ativinas Tipo I/genética , Imunidade Inata/genética , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Telangiectasia Hemorrágica Hereditária/genética , Fator de Crescimento Transformador beta/genética , Receptores de Ativinas Tipo I/biossíntese , Receptores de Activinas Tipo II , Animais , Endoglina , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Infecções Oportunistas/genética , Infecções Oportunistas/patologia , Fagocitose/genética , Telangiectasia Hemorrágica Hereditária/patologia
15.
Angiogenesis ; 21(1): 169-181, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29147802

RESUMO

Hereditary hemorrhagic telangiectasia is an autosomal dominant trait affecting approximately 1 in 5000 people. A pathogenic DNA sequence variant in the ENG, ACVRL1 or SMAD4 genes, can be found in the majority of patients. The 12th International Scientific HHT Conference was held on June 8-11, 2017 in Dubrovnik, Croatia to present and discuss the latest scientific achievements, and was attended by over 200 scientific and clinical researchers. In total 174 abstracts were accepted of which 58 were selected for oral presentations. This article covers the basic science and clinical talks, and discussions from three theme-based workshops. We focus on significant emergent themes and unanswered questions. Understanding these topics and answering these questions will help to define the future of HHT research and therapeutics, and ultimately bring us closer to a cure.


Assuntos
Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/metabolismo , Malformações Arteriovenosas/patologia , Malformações Arteriovenosas/terapia , Croácia , Endoglina/genética , Endoglina/metabolismo , Epistaxe/genética , Epistaxe/metabolismo , Variação Genética , Humanos , Proteína Smad4/genética , Proteína Smad4/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Telangiectasia Hemorrágica Hereditária/patologia , Telangiectasia Hemorrágica Hereditária/terapia
16.
Microcirculation ; 24(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27926994

RESUMO

This issue of microcirculation focusses on the special topic of "microvessels of the heart" and contains five state-of-the-art reviews and one expert article that reflect current efforts to address the major gaps in our understanding of these key microvessels. In the adult heart, most attention until recently (especially among the clinical cardiology community) has been given to the main coronary arteries, which are the culprit vessels in patients with coronary artery disease, including its most serious manifestation, acute MI. However, due to major advances in efficiently reopening the acutely blocked coronary arteries, MI is no longer the killer disease it once was. In contrast, there are few treatment options for patients who develop microvascular obstruction during acute MI. Indeed, we have a very poor understanding of this disease, or even how heart vessels are initially formed in development. This is surprising in light of the essential nature of the cardiac microvessels for efficient cardiac function throughout life. The articles in this issue are from six keynote speakers at the 66th annual meeting of the BMS at Newcastle University and review our understanding of these key vessels from initial development to their role in adult heart disease.


Assuntos
Circulação Coronária/fisiologia , Microcirculação/fisiologia , Doença da Artéria Coronariana/terapia , Humanos , Regeneração
18.
Arterioscler Thromb Vasc Biol ; 36(4): 707-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821948

RESUMO

OBJECTIVE: To determine the role of Gja5 that encodes for the gap junction protein connexin40 in the generation of arteriovenous malformations in the hereditary hemorrhagic telangiectasia type 2 (HHT2) mouse model. APPROACH AND RESULTS: We identified GJA5 as a target gene of the bone morphogenetic protein-9/activin receptor-like kinase 1 signaling pathway in human aortic endothelial cells and importantly found that connexin40 levels were particularly low in a small group of patients with HHT2. We next took advantage of the Acvrl1(+/-) mutant mice that develop lesions similar to those in patients with HHT2 and generated Acvrl1(+/-); Gja5(EGFP/+) mice. Gja5 haploinsufficiency led to vasodilation of the arteries and rarefaction of the capillary bed in Acvrl1(+/-) mice. At the molecular level, we found that reduced Gja5 in Acvrl1(+/-) mice stimulated the production of reactive oxygen species, an important mediator of vessel remodeling. To normalize the altered hemodynamic forces in Acvrl1(+/-); Gja5(EGFP/+) mice, capillaries formed transient arteriovenous shunts that could develop into large malformations when exposed to environmental insults. CONCLUSIONS: We identified GJA5 as a potential modifier gene for HHT2. Our findings demonstrate that Acvrl1 haploinsufficiency combined with the effects of modifier genes that regulate vessel caliber is responsible for the heterogeneity and severity of the disease. The mouse models of HHT have led to the proposal that 3 events-heterozygosity, loss of heterozygosity, and angiogenic stimulation-are necessary for arteriovenous malformation formation. Here, we present a novel 3-step model in which pathological vessel caliber and consequent altered blood flow are necessary events for arteriovenous malformation development.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Malformações Arteriovenosas/enzimologia , Conexinas/metabolismo , Células Endoteliais/enzimologia , Vasos Retinianos/enzimologia , Telangiectasia Hemorrágica Hereditária/enzimologia , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II/genética , Animais , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Células Cultivadas , Conexinas/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Camundongos Mutantes , Camundongos Transgênicos , Neovascularização Patológica , Fenótipo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Transfecção , Remodelação Vascular , Proteína alfa-5 de Junções Comunicantes
19.
Angiogenesis ; 19(4): 451-461, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27325285

RESUMO

An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68(+) cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP(+) bone marrow-derived macrophages than WT mice (P = 0.01). More CD34(+) cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.


Assuntos
Malformações Arteriovenosas Intracranianas/patologia , Monócitos/patologia , Receptores de Ativinas Tipo I/deficiência , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Animais , Diferenciação Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Endoglina/deficiência , Endoglina/genética , Células Endoteliais/patologia , Humanos , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos de Músculo Liso/patologia , Neovascularização Patológica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA