Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Invertebr Pathol ; 165: 13-21, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29402394

RESUMO

Microbial pesticides based on bacteria, fungi and viruses or their bioactive compounds have long been developed as alternatives for synthetic pesticides to control invertebrate pests. However, concern for environmental and human health from excessive reliance on chemical pesticides, changes in residue standards, and increased demand for organically grown produce has contributed to a considerable growth in their use in recent years. There are currently 356 registered biopesticide active ingredients in the U.S., including 57 species and/or strains of microbes or their derivatives, labelled for use against pestiferous insects, mites and nematodes. Strains of Bacillus thuringiensis for Lepidoptera remain the most popular products, but newer bacterial strains and their metabolites have been developed against a wider range of arthropods for use on fruit, vegetable and ornamental crops. Currently, ten fungal species/strains are registered against thrips, whiteflies, aphids, or other sucking pests and plant parasitic nematodes in greenhouse, nursery and field crops, while five nucleopolyhedroviruses and three granuloviruses are registered for Lepidoptera in field and greenhouse grown vegetables and ornamentals, tree fruit and nuts, forestry, and stored products. Many of these products are organic listed and most have 4 h or less reentry and no pre-harvest restrictions. Investment by multinational companies, advances in screening, industrial fermentation and storage of new microorganisms, are increasing the market share for microbials. Here, we summarize the market for microbial-based pesticides labelled for invertebrates in the U.S. We cover current uses and recent advances that further advance their use in additional markets in the coming decades.


Assuntos
Agentes de Controle Biológico , Controle de Insetos , Marketing , Controle Biológico de Vetores , Agricultura/tendências , Animais , Bacillus thuringiensis , Produtos Agrícolas , Granulovirus , Insetos/microbiologia , Insetos/parasitologia , Inseticidas , Nematoides , Nucleopoliedrovírus , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Estados Unidos
2.
J Invertebr Pathol ; 165: 67-73, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29476767

RESUMO

Biological control programs with arthropods have been in practice in Iran since the 1930s. However, development and registration of microbial biopesticides is much more recent. Currently, about 15 biopesticide products are registered or pending registration for commercial use on various crops. Products based on Bacillus thuringiensis subsp. kurstaki are most widely sold for lepidopteran pest control, followed by B. thuringiensis subsp. isralensis against dipteran pests in vector control programs. Additionally, mycoinsecticides based on Lecanicillium lecanii and Beauveria bassiana, against various arthropod pests, and a mycofungicide based on Trichoderma harzianum for controlling soilborne diseases are also registered. In Iran, the national Plant Protection Organization (PPO) manages regulation of microbial pesticides and the Pesticide Supervision Board within the PPO oversees registration of all pesticides. Currently, two Iranian companies produce microbial pesticides and two more companies are approved to start production in the near future. We review the history of microbial control of arthropod pests in Iran with examples of sustainable agricultural practices, the current status of the market and registration procedures for microbial pesticides, along with the challenges and opportunities for the advancement of microbial control in Iran.


Assuntos
Agentes de Controle Biológico , Controle de Insetos , Controle Biológico de Vetores , Animais , Bacillus thuringiensis , Baculoviridae , Beauveria , Controle de Insetos/métodos , Controle de Insetos/tendências , Insetos/microbiologia , Insetos/parasitologia , Irã (Geográfico) , Marketing , Nematoides , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências
3.
J Invertebr Pathol ; 165: 74-81, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30347206

RESUMO

The biopesticide industry in India is undergoing rapid change, reflecting increased global trade in agricultural commodities, a changing regulatory environment and evolving consumer preferences. Currently biopesticides comprise ≈ 5% of the Indian pesticide market, with at least 15 microbial species and 970 microbial formulations registered through the Central Insecticides Board and Registration Committee (CIBRC). As of 2017, over 200 products based on entomopathogenic fungi (Beauveria bassiana, B. brongniartii, Metarhizium anisopliae s.l., Lecanicillium lecanii and Hirsutella thompsonii) and nematicidal fungi (Purpureocillium lilacinum and Pochonia chlamydosporia) are registered for use against various arthropods and plant parasitic nematodes. Regarding bacteria, over 30 products based on Bacillus thuringiensis (Bt) subsp. kurstaki are registered against bollworms, loopers and other lepidopterans, while 12 based on Bt subsp. israelensis and three with Bt subsp. sphaericus have been used against mosquitoes. Two viruses are registered, namely Helicoverpa armigera nucleopolyhedrovirus (22 products) and Spodoptera litura nucleopolyhedrovirus (5 products) for use against bollworms and armyworms. Four entomopathogenic nematode species are sold in Indian market. These include long-lasting wettable powder formulations of Heterorhabditis indica developed by the ICAR-National Bureau of Agricultural Insect Resources, Bengaluru which have been distributed on a large scale to control white grubs and other sugarcane pests. Biopesticide research on the subcontinent is at a relatively early stage, but evolving rapidly, and focusing on indigenous entomopathogens. Despite onerous regulation, quality-control issues and limited large-scale production facilities, investment in domestic fermentation technologies, improved delivery systems, and promotion of biological control through private and public initiative will increase the share of microbial biopesticides in the country.


Assuntos
Agentes de Controle Biológico , Controle de Insetos , Controle Biológico de Vetores , Animais , Bacillus thuringiensis , Baculoviridae , Beauveria , Produtos Agrícolas , Hypocreales , Índia , Controle de Insetos/métodos , Controle de Insetos/tendências , Insetos/microbiologia , Insetos/parasitologia , Metarhizium , Nematoides/microbiologia , Nucleopoliedrovírus , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Doenças das Plantas/parasitologia , Rabditídios
4.
J Insect Sci ; 17(4)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973486

RESUMO

In North America, the sweetpotato whitefly, Bemisia tabaci Genn., is an important pest of greenhouse poinsettia. Growers have limited options to control this pest during propagation of cuttings, which are rooted under mist for several weeks. Early establishment of this pest increases the difficulty of managing the whitefly and retaining high aesthetic standard during the remaining crop production phase. We evaluated two neonicotinoids with translaminar activity, thiamethoxam (Flagship 25WG), and acetamiprid (TriStar 70 WSP), for control of B. tabaci pre-infested on unrooted cuttings propagated under mist. In an experimental greenhouse, both materials significantly reduced whitefly populations, providing an average reduction of 87.8% and 61.5% total recovered whitefly stages respectively, compared with controls. In another test, dipping cuttings in thiamethoxam (immersion treatment) did not improve control significantly, when compared with foliar sprays applied at label rate. In a commercial greenhouse operation, immersion treatments of thiamethoxam on pre-infested poinsettia cuttings maintained whiteflies at ≤ 0.02/plant, compared with up to 0.33/plant in untreated cuttings. Our data suggest that treating unrooted cuttings before or at the start of propagation can be part of an overall strategy for growers to manage whiteflies in poinsettia production.


Assuntos
Hemípteros , Controle de Insetos/métodos , Inseticidas/administração & dosagem , Nitrocompostos/administração & dosagem , Oxazinas/administração & dosagem , Piridinas/administração & dosagem , Tiazóis/administração & dosagem , Animais , Euphorbia , Feminino , Masculino , Neonicotinoides , Tiametoxam
5.
J Invertebr Pathol ; 130: 147-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26264671

RESUMO

Isaria fumosorosea is an important pathogen of whiteflies, and is used as a mycoinsecticide against this pest in many regions of the world. We quantified the pathogenicity of the Chinese isolate IF-1106 against different life stages of sweetpotato whitefly, Bemisia tabaci, on cucumber plants, and describe the infection process and aspects of the host immunological response in the laboratory. The second instar was the most susceptible life stage to infection, with mortality rates at 10(7)conidia/ml ≈83% after 7d. Scanning electron microscopy was used to monitor morphological aspects of the infection process. The following stages were observed; conidia adhered on the cuticle of B. tabaci and began to germinate within 6h of inoculation, appressoria development after 24h, germ tube penetration within 48h, emergent hyphae within 72h, secondary conidiogenesis within 96h with mass hyphal proliferation occurring on cadavers within 120h. The activities of endogenous enzymes were evaluated from host homogenate at various intervals post infection. Three enzymes associated with antioxidant activity [superoxide dismutase (SOD), perioxidase (POD), and catalase (CAT)], and two with detoxification [glutathione S-transferase (GSTs) and carboxylesterase (CarE)] were apparently upregulated in second instars infected by I. fumosorosea. Enzyme activities reached peak values at 48-60h post infection, then decreased to significantly lower than controls in 84h as mycosis occurred. Our results provide new insights into the pathogenicity and potential physiological response of B. tabaci to this fungal isolate.


Assuntos
Hemípteros/parasitologia , Hypocreales/patogenicidade , Controle Biológico de Vetores/métodos , Animais , Hemípteros/imunologia , Interações Hospedeiro-Parasita/imunologia , Hypocreales/imunologia , Virulência
6.
J Econ Entomol ; 108(2): 730-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470184

RESUMO

Tropical sod webworm, Herpetogramma phaeopteralis Guenée, is an important pest of warm-season turfgrass in the Gulf Coast states of the United States, the Caribbean Islands, and Central America. Current control recommendations rely on topical application of insecticides against caterpillars. The objective of this study was to generate resistance baseline data of H. phaeopteralis to six insecticide classes. Residual activity of clothianidin, chlorantraniliprole, and bifenthrin was also compared under field conditions in Central Florida. Chlorantraniliprole was the most toxic compound tested (LC50 value of 4.5 ppm), followed by acephate (8.6 ppm), spinosad (31.1 ppm), clothianidin (46.6 ppm), bifenthrin (283 ppm) and Bacillus thuringiensis kurstaki, (342 ppm). In field tests, all compounds at label rates were effective (≥94% mortality of larvae exposed to fresh residues). However, a more rapid decline in activity of clothianidin and bifenthrin was observed compared with chlorantraniliprole. Clothianidin had no statistically detectable activity after 4 wk post-application in spring and the fall, and bifenthrin had no detectable activity after 3 wk in the spring and the fall. However, chlorantraniliprole maintained significant activity (≥84% mortality) compared with other treatments throughout the 5-wk study period. This study provides new information regarding the relative toxicities and persistence of current insecticides used for H. phaeopteralis and other turfgrass caterpillars.


Assuntos
Resistência a Inseticidas , Inseticidas , Mariposas , Resíduos de Praguicidas/análise , Animais , Larva , Poaceae
9.
J Insect Sci ; 13: 31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23895429

RESUMO

Commercial strains of entomopathogenic fungi were evaluated for control of chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), an invasive pest of ornamental and vegetable plants in the Caribbean and southeastern United States. In laboratory assays, LC50 values against adult S. dorsalis were 5.1 × 10(4) CFU/mL for Beauveria bassiana GHA, with higher values 3.1 × 10(5) for Metarhizium brunneum F52 and 3.8 × 10(5) for Isaria fumosorosea Apopka 97. Second instars were comparatively less susceptible to all isolates, ostensibly due to moulting, with LC50 values of 1.1 × 10(8), 7.0 × 10(5), and 9.9 × 10(5) CFU/spores per mL for GHA, F52, and Apopka 97 strains, respectively. In greenhouse cages, compared with controls, three applications of mycoinsecticides and other biorational insecticides at 7 to 14 day intervals reduced overall S. dorsalis populations on pepper plants Capsicum annuum cv. California Wonder: spinosad reduced populations by 94-99%, M. brunneum F52 by 84-93%, B. bassiana GHA by 81-94%, I. fumosorosea PFR-97 by 62-66%, and different horticultural oils by 58-85%. The proportion of marketable fruit was significantly increased by M. brunneum F52, B. bassiana GHA, and 2% SuffOil-X treatments. Slightly lower levels of control were observed in nursery tests with ornamental rose shrubs, Rosa sp. Red Double Knock Out®, during hot sunny conditions. Four applications reduced thrips populations over 10 weeks: spinosad by an average of 91%, M. brunneum F52 by an average of 81%, B. bassiana GHA by an average of 62%, SuffOil-X by an average of 50%, and I. fumosorosea PFR-97 by an average of 44%. The data show that mycoinsecticides can be used in management strategies for low to moderate populations of S. dorsalis and provide resistance management tools for the limited number of insecticides that are effective against this pest.


Assuntos
Beauveria/fisiologia , Metarhizium/fisiologia , Controle Biológico de Vetores , Tisanópteros/microbiologia , Animais , Inseticidas , Dose Letal Mediana
10.
Insects ; 14(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623382

RESUMO

While herbivorous insect saliva plays a crucial role in the interaction between plants and insects, its role in the inter-specific interactions between herbivorous insects has received little attention. Pre-infestation of citrus plants with Aphis spiraecola Patch and Aphis (Toxoptera) citricidus (Kirkaldy) exhibited positive and negative effects on the performance (feeding and reproduction) of Diaphorina citri Kuwayama. We explored the role of saliva in this plant-mediated interaction by infiltrating fresh and boiled aphid saliva into plants and detecting D. citri feeding behavior and citrus plant defense response. Leaf infiltration of A. spiraecola saliva disrupted the subsequent feeding of D. citri, indicated by prolonged extracellular stylet pathway duration and decreased phloem sap ingestion duration. By contrast, infiltration of A. citricidus saliva decreased the duration of the extracellular stylet pathway and phloem sap ingestion of D. citri. Furthermore, gene expression analysis showed that several salicylic acid (SA)- and jasmonic acid (JA)-pathway-related genes were activated by A. spiraecola saliva infiltration. However, two SA-pathway-related genes were activated and three JA-pathway-related genes were suppressed following A. citricidus saliva infiltration. Treatment with boiled saliva did not similarly impact D. citri feeding behavior or plant defense response. This study suggests that salivary components (those that can be inactivated by heating) from two citrus aphid species differently affect plant defenses and that they were responsible for the contrasting plant-mediated effects of two citrus aphids on the feeding behavior of D. citri. This study indicates a novel three-way citrus aphid-plant-citrus psyllid interaction.

11.
Pest Manag Sci ; 79(2): 811-820, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36264110

RESUMO

BACKGROUND: Herbivores may influence each other directly and through plant mediated inter-specific interactions. The Asian citrus psyllid (Diaphorina citri Kuwayama) and citrus aphids are key pests that can co-exist on citrus, but their plant-mediated interaction between them is unknown. Here we investigated plant-mediated effect of two citrus aphid species, the polyphagous Aphis spiraecola Patch and the oligophagous Aphis (Toxoptera) citricidus (Kirkaldy) on the feeding behavior and reproduction of Diaphorina citri, and explored the underlying mechanisms. RESULTS: In comparison with those on aphid free plants, Diaphorina citri had decreased reproduction and reduced phloem feeding on Aphis spiraecola pre-infested plants, while the reproduction and feeding efficiency were increased on Aphis citricidus pre-infested plants. Jasmonic acid (JA) dependent defense was significantly activated by Diaphorina citri feeding on Aphis spiraecola pre-infested plants, but was suppressed by Diaphorina citri feeding on Aphis citricidus pre-infested plants compared with that on aphid free plant. By contrast, only one tested marker gene in salicylic acid (SA) signaling was activated by Diaphorina citri feeding on Aphis spiraecola pre-infested plants. Furthermore, exogenous application of methyl jasmonate, but not SA, conferred resistance against Diaphorina citri in our citrus trials. CONCLUSION: Our results indicate that pre-infestation by two citrus aphid species differentially altered Diaphorina citri induced citrus JA dependent defense, which resulted in different effect on subsequent Diaphorina citri performance. © 2022 Society of Chemical Industry.


Assuntos
Afídeos , Citrus , Hemípteros , Animais , Comportamento Alimentar , Reprodução , Doenças das Plantas
12.
Insects ; 14(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37233038

RESUMO

Plants grown with vermicompost amendments are known to be harmful to sap-sucking insects, but the underlying mechanism remains to be determined. Here we investigated the feeding behavior of Diaphorina citri Kuwayama on Citrus limon (L.) Burm. F using the electrical penetration graph technique. Plants were grown in soil with different vermicompost rates (0%, 20%, 40%, and 60% w/w). Additionally, plants were tested for the activity of salicylic acid (SA) and jasmonic acid (JA) pathway-related enzymes. When compared to the control, vermicompost treatments (40% and 60%) decreased duration of phloem sap feeding and increased duration of the pathway phase of D. citri, and the 60% vermicompost made it more difficult for D. citri to reach and gain access to phloem sap. Enzymatic assays indicated that the 40% amendment rate increased phenylalanine ammonia lyase (involved in the SA pathway) and polyphenol oxidase (involved in the JA pathway), while the 60% amendment rate increased -1,3-glucanases (involved in the SA pathway) and lipoxygenase (involved in the JA pathway). The 20% amendment rate had no effect on feeding or enzyme activities. This study revealed that vermicompost amendments can reduce the efficiency of D. citri feeding, which may result from increased plant resistance via the SA and JA pathway.

13.
J Econ Entomol ; 105(5): 1573-80, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23156152

RESUMO

ABSTRACT The tropical sod webworm, Herpetogramma phaeopteralis Guenée is a major turfgrass pest in the southeastern United States. We evaluated larval development on five artificial diets and at six temperatures (15, 20, 25, 30, 32.5, 35 +/- 1 degree C) on St. Augustinegrass (Stenotaphrum secundatum (Walter) Kuntze). Only larvae fed St. Augustinegrass and soy-wheat germ diets completed their lifecycles. None of the artificial diets tested (corn-based, soy-wheat germ, corn cob-wheat germ, corn cob-soy flour, or pinto bean) were suitable for rearing this species, because of high mortality and slower developmental time. Total developmental time (oviposition to adult) on S. secundatum significantly decreased from 47.8 d at 20 degrees C to 21.1 d at 30 degrees C, and then increased to 32.6 d at 32.5 degrees C. Tropical sod webworm failed to complete larval development at 15 and 35 degrees C. The relationship between temperature and developmental rate was described using linear (common and polynomial) and nonlinear models (Briere-1, Briere-2, and Lactin-2). The estimated lower temperature thresholds using a linear model for eggs, first, second, third, fourth, fifth, and sixth instars, prepupa, pupa, and total development were 10.1, 6.9, 12.3, 10.5, 15.3, 13.9, 9.1, 13.1, 12.0, and 13.1 degrees C, and the thermal constant of these stages were 62.9, 66.2, 38.2, 40.3, 24.9, 32.3, 51.9, 106.4, 109.9, and 370.4 degree-days, respectively. The Briere-1 model provided the best fit with estimated lower, upper, and optimum thresholds for total development of 14.9, 34.3, and 29.4 degrees C, respectively. The developmental requirements of H. phaeopteralis can be used to help predict the distribution and seasonal phenology of this pest.


Assuntos
Dieta , Mariposas/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Modelos Lineares , Modelos Biológicos , Dinâmica não Linear , Óvulo/crescimento & desenvolvimento , Poaceae , Pupa/crescimento & desenvolvimento , Temperatura
14.
Insects ; 13(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35206682

RESUMO

Predatory species comprise a small but important and often overlooked component of the Thysanoptera. A case in point, the ant-mimicking Franklinothrips are widely distributed in the tropics and are considered important generalist natural enemies for thrips and some other small arthropod prey. Franklinothrips present an addition to biocontrol applications, i.e., greenhouse or commercial application for certain target pests and situations. Current knowledge, including distribution, biological features, life history pa rameters, prey specificity, host plant associations and lass production is yet insufficient to decide to what extent Franklinothrips could contribute for biological control programs. In this review, we summarized the geographical background, morphology, and prey associations, with a focus on F. vespiformis, the most widely distributed species of predatory thrips. This literature review serves as the basis for future research into the use of Franklinothrips as biocontrol agents for economically significant insect and mite pests in China and elsewhere.

15.
Pest Manag Sci ; 78(12): 5057-5070, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087293

RESUMO

Some species of thrips have evolved predatory behaviours, with their reported prey range including thrips, mites, scale-insects, whitefly, psyllid nymphs, and eggs of moths and beetles. However, our current understanding of the biology and potential of these thrips as biological control agents is insufficient, limiting our understanding of their role in pest management. This paper assesses published information on the diversity of predatory thrips and the available biological data on their diet breadth. About 100 species within three different families - Aeolothripidae, Phlaeothripidae and Thripidae - seem likely to be predatory, although some conclusions are speculative. Both facultative and obligate predators can be found among the species with prey records. Obligate predators feed primarily on arthropod tissues, whereas facultative predators consume plant tissues in addition to prey. Quantitative information regarding developmental biology, longevity and fecundity, was obtained for only 11 species. Obligate predators, particularly members of Scolothrips and Franklinothrips, are efficient biological control agents. To better augment the use of predatory thrips in pest management, further increased investment in mass rearing, life history and ecological studies, including interactions with other organisms and their habitat, are needed on these natural enemies. © 2022 Society of Chemical Industry.


Assuntos
Ácaros , Tisanópteros , Animais , Agentes de Controle Biológico , Controle Biológico de Vetores , Comportamento Predatório
16.
Plants (Basel) ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35567136

RESUMO

Encapsulation via nanotechnology offers a potential method to overcome limited thermal and photo-stability of botanical pesticides. In this study, nanospheres of essential oils (NSEO) derived from Zanthoxylum rhoifolium Lam. fruit were characterized and evaluated for their photostability and insecticidal activity against Bemisia tabaci. Three major compounds of Z. rhoifolium fruits were detected by CG-MS: ß-phellandrene (76.8%), ß-myrcene (9.6%), and germacrene D (8.3%). The nanoprecipitation method was used to obtain homogeneous spherical NSEO, with ≥98% encapsulation efficiency. Tests with UV/Vis spectrophotometry showed significantly reduced photodegradation from exposed NSEO samples when compared with essential oil (EO) controls. Whitefly screenhouses bioassays with bean plants treated with 0.25, 0.5, 1 and 1.5% suspensions showed EO treatments in both free and nanoencapsulated forms reduced adult whitefly oviposition by up to 71%. In further tests, applications at 1.5% caused ≥64% mortality of second instar nymphs. When the test was conducted under high temperature and light radiation conditions, the insecticidal effect of NSEO treatments was improved (i.e., 84.3% mortality) when compared to the free form (64.8%). Our results indicate the insecticidal potential of EO-derived from Z. rhoifolium fruits with further formulation as nanospheres providing greater photostability and enhanced insecticidal activity against B. tabaci under adverse environmental conditions.

17.
J Econ Entomol ; 101(2): 288-94, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18459390

RESUMO

Codling moth, Cydia pomonella (L.), is the major pest of apple (Malus spp.) in the western United States and many other regions of the world. The codling moth granulovirus (CpGV) provides a selective and safe means of its control. We assessed the long-term stability and storage potential of two commercial formulations of CpGV, Cyd-X, and Virosoft. All assays were performed with individual C. pomonella neonate larvae in 2-ml vials on 1 ml of artificial larval diet that was surface inoculated with 10 microl of the test virus suspension. Baseline quantitative assays for the two formulations revealed that the LC50 and LC95 values (occlusion bodies per vial) did not differ significantly between the formulations. For year-long studies on Cyd-X stability, the product was stored at -20, 2, 25, and 35 degrees C, and quantitative bioassays were conducted after 0, 3, 6, and 12 mo of storage. Cyd-X retained good larvicidal activity from -20 to 25 degrees C, and it was the least negatively affected at the lowest temperature. Storage of Cyd-X at 35 degrees C was detrimental to its larvicidal activity within 3 mo of storage. For longer term storage studies, Cyd-X and Virosoft formulations were stored at 2, 25, and 35 degrees C, and assayed for larvicidal activity over a 3-yr period. For recently produced product, a 10-microl sample of a 10(-5) dilution of both formulations resulted in 95-100% mortality in neonate larvae. Larvicidal activity for the Cyd-X formulation remained essentially unaffected for 156 wk when stored at 2 and 25 degrees C, but it began to decline significantly after 20 wk of storage at 35 degrees C. The Virosoft formulation stored at 2 degrees C also remained active throughout the 3-yr study, but it began to decline in larvicidal activity after 144 wk at 25 degrees C and 40 wk at 35 degrees C. The information reported in this study should be useful to growers and commercial suppliers for avoiding decreases in CpGV potency due to improper storage conditions.


Assuntos
Baculoviridae/fisiologia , Mariposas/virologia , Temperatura , Animais , Bioensaio , Larva/virologia , Controle Biológico de Vetores , Preservação Biológica , Fatores de Tempo
18.
J Econ Entomol ; 101(5): 1540-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18950035

RESUMO

Liquid suspensions and dry formulations of a granulovirus (family Baculoviridae, genus Granulovirus, PoGV) derived from infected larvae and the bacterium Bacillus thuringiensis subsp. kurstaki (Berliner) (Btk) were evaluated for control of the potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in stored tubers. Laboratory bioassays at 25 degrees C showed that both PoGV and a wettable powder (WP) formulation of Btk incorporated with carriers (water, talc, sand, diatomaceous earth, and kaolin clay), were effective against neonate larvae. Depending on the technique, 100% larval mortality was achieved at concentrations as low as 0.025 larval equivalents (LE) PoGV per kg tuber and 150 mg Btk WP per kg tuber. However, 100% mortality was never achieved with tests on preinfested tubers, ostensibly due to the higher dosage required to kill older instars inside tubers. The most effective PoGV formulations were dipping (water) and talc, with dipping most effective for postinfestation treatments, causing up to 91.6% mortality at 0.4 LE per kg. There was no significant effect of formulation in the Btk treatments. The protective effects of residues were also evaluated under longer-term storage conditions. Batches of tubers treated with PoGV or Btk via dipping (up to 0.1 LE and 150 mg WP per kg tuber) were stored in cages containing an initial potato tuberworm infestation (10% of tubers). Although potato tuberworm populations were reduced by up to 98.4% after 2 mo at 25 degrees C, no treatments prevented the development and reproduction of the F1 generation. The sprouting of stored tubers seemed to be a limiting factor for sustained control. No significant treatment effects were detected in similar cages held at 12 degrees C for 4.5 mo. Improved strategies for the application of PoGV and Btk for long-term potato tuberworm control in tuber stores, including the use of chemical sprout suppressants, are discussed.


Assuntos
Bacillus thuringiensis/fisiologia , Granulovirus/fisiologia , Mariposas/microbiologia , Controle Biológico de Vetores/métodos , Solanum tuberosum/parasitologia , Animais , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/virologia , Mariposas/crescimento & desenvolvimento , Mariposas/virologia , Tubérculos/parasitologia , Temperatura
19.
Environ Entomol ; 47(3): 623-628, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29596611

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) is a major disease in peanut, Arachis hypogaea L., across peanut producing regions of the United States and elsewhere. Two thrips, Frankliniella fusca Hinds and Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), are considered important vectors of TSWV in peanut in the Southeast. We compared the efficiency of acquisition (by larvae) and transmission (adults) of both thrips species for TSWV (Texas peanut-strain) to leaf disks of peanut (Florunner), as well as to Impatiens walleriana Hook. f. (Dwarf White Baby) and Petunia hybrida Juss. 'Fire Chief' using double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Both species were competent TSWV vectors in peanut and Impatiens, although F. fusca was the more efficient vector overall, i.e., virus acquisition and transmission rates for F. fusca averaged over several bioassays were 51.7 and 26.6%, respectively, compared with 20.0 and 15.3% for F. occidentalis. Neither species effectively transmitted this TSWV strain to Petunia (i.e., ≤3.6% transmission). We found statistically similar virus acquisition and transmission rates between both sexes for each species. We also detected no differences in TSWV-acquisition and transmission frequency between macropterous and brachypterous (short-wing) forms of F. fusca collected from a field population in south Texas. DAS-ELISA failed to detect low levels of TSWV in a few thrips that subsequently proved to be competent vectors.


Assuntos
Arachis/virologia , Doenças das Plantas/virologia , Tisanópteros/fisiologia , Tospovirus/fisiologia , Animais , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/virologia , Masculino , Especificidade da Espécie , Tisanópteros/crescimento & desenvolvimento , Tisanópteros/virologia
20.
Microbiol Res ; 216: 12-22, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269851

RESUMO

Selecting entomopathogenic fungal isolates with resilience to environmental stresses, optimal mass production characteristics, and with high virulence to target pests favors the development of mycopesticides. A case in point, Cordyceps (= Isaria) javanica has been extensively investigated for non-chemical control of whiteflies worldwide. We phylogenetically characterized 11 native C. javanica isolates from Northeastern and Central Brazil. These isolates were screened for tolerance to heat-shock, UV-B radiation, osmotic and oxidative stresses, as well as conidial production on cereal grain and insecticidal activity against the whitefly Bemisia tabaci (MEAM 1) in the laboratory. All isolates were pathogenic to whiteflies and significant (3-fold) differences in median lethal concentration were observed among isolates. Furthermore, pronounced differences among isolates were found for stress factors and conidial production. Using principal component analysis, our results highlighted three major clusters formed by isolates (i) resistant to osmotic and oxidative stress, (ii) resilient to UV-B, and (iii) with high virulence, conidial production and heat tolerance. Overall, isolate CG1228 performed best based on multi-stress resistance, mass production and virulence attributes in the laboratory. This study highlights the importance of exploring natural variation in entomopathogenic fungi for selection of appropriate isolates for effective biocontrol of insect pests coupled with mass production characteristics and abiotic stress tolerances.


Assuntos
Cordyceps/isolamento & purificação , Cordyceps/fisiologia , Fenótipo , Reprodução Assexuada/fisiologia , Estresse Fisiológico/fisiologia , Aclimatação/fisiologia , Brasil , Cordyceps/patogenicidade , Cordyceps/efeitos da radiação , Resposta ao Choque Térmico , Temperatura Alta , Inseticidas , Análise Multivariada , Pressão Osmótica , Estresse Oxidativo , Controle Biológico de Vetores/métodos , Filogenia , Esporos Fúngicos/crescimento & desenvolvimento , Raios Ultravioleta , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA