Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(8): 3382-3404, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293852

RESUMO

Tuberculosis (TB) is a fast spreading; transmissible disease caused by the Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis has a high death rate in its endemic regions due to a lack of appropriate treatment and preventative measures. We have used a vaccinomics strategy to create an effective multi-epitope vaccine against M. tuberculosis. The antigenic proteins with the highest antigenicity were utilised to predict cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes. CTL and HTL epitopes were covered in 99.97% of the population. Seven epitopes each of CTL, HTL, and LBL were ultimately selected and utilised to develop a multi-epitope vaccine. A vaccine design was developed by combining these epitopes with suitable linkers and LprG adjuvant. The vaccine chimera was revealed to be highly immunogenic, non-allergenic, and non-toxic. To ensure a better expression within the Escherichia coli K12 (E. coli K12) host system, codon adaptation and in silico cloning were accomplished. Following that, various validation studies were conducted, including molecular docking, molecular dynamics simulation, and immunological simulation, all of which indicated that the designed vaccine would be stable in the biological environment and effective against M. tuberculosis infection. The immune simulation revealed higher levels of T-cell and B-cell activity, which corresponded to the actual immune response. Exposure simulations were repeated several times, resulting in increased clonal selection and faster antigen clearance. These results suggest that, if proposed vaccine chimera would test both in-vitro and in-vivo, it could be a viable treatment and preventive strategy for TB.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Escherichia coli/metabolismo , Epitopos de Linfócito T , Epitopos de Linfócito B , Vacinas de Subunidades Antigênicas , Simulação de Dinâmica Molecular , Imunidade , Tuberculose/prevenção & controle , Biologia Computacional/métodos
2.
Autophagy ; 19(12): 3201-3220, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516933

RESUMO

ABBREVIATIONS: AF2: AlphaFold2; AF2-Mult: AlphaFold2 multimer; ATG: autophagy-related; CTD: C-terminal domain; ECTD: extreme C-terminal domain; FR: flexible region; MD: molecular dynamics; NTD: N-terminal domain; pLDDT: predicted local distance difference test; UBL: ubiquitin-like.


Assuntos
Autofagia , Enzimas de Conjugação de Ubiquitina , Enzimas de Conjugação de Ubiquitina/metabolismo , Furilfuramida , Proteínas Relacionadas à Autofagia , Inteligência Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA