Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Clin Genet ; 105(6): 611-619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308583

RESUMO

Coronary artery disease (CAD), the most prevalent cardiovascular disease, is the leading cause of death worldwide. Heritable factors play a significant role in the pathogenesis of CAD. It has been proposed that approximately one-third of patients with CAD have a positive family history, and individuals with such history are at ~1.5-fold increased risk of CAD in their lifespans. Accordingly, the long-recognized familial clustering of CAD is a strong risk factor for this disease. Our study aimed to identify candidate genetic variants contributing to CAD by studying a cohort of 60 large Iranian families with at least two members in different generations afflicted with premature CAD (PCAD), defined as established disease at ≤45 years in men and ≤55 years in women. Exome sequencing was performed for a subset of the affected individuals, followed by prioritization and Sanger sequencing of candidate variants in all available family members. Subsequently, apparently healthy carriers of potential risk variants underwent coronary computed tomography angiography (CCTA), followed by co-segregation analysis of the combined data. Putative causal variants were identified in seven genes, ABCG8, CD36, CYP27A1, PIK3C2G, RASSF9, RYR2, and ZFYVE21, co-segregating with familial PCAD in seven unrelated families. Among these, PIK3C2G, RASSF9, and ZFYVE21 are novel candidate CAD susceptibility genes. Our findings indicate that rare variants in genes identified in this study are involved in CAD development.


Assuntos
Doença da Artéria Coronariana , Predisposição Genética para Doença , Linhagem , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Variação Genética , Estudos de Coortes , Sequenciamento do Exoma , Irã (Geográfico)/epidemiologia , Fatores de Risco
2.
Am J Hum Genet ; 105(5): 1005-1015, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630790

RESUMO

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.


Assuntos
Variação Genética/genética , Lisencefalia/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Alelos , Encéfalo/metabolismo , Movimento Celular/genética , Criança , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Microtúbulos/genética , Malformações do Sistema Nervoso/genética , Neurônios/metabolismo , Fenótipo , Tubulina (Proteína)/genética
3.
PLoS Genet ; 15(9): e1008385, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31550250

RESUMO

Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.


Assuntos
Etnicidade/genética , Variação Genética/genética , Adulto , Idoso , Consanguinidade , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Irã (Geográfico)/etnologia , Masculino , Pessoa de Meia-Idade
4.
Clin Genet ; 99(1): 187-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895917

RESUMO

Mutations in adaptor protein complex-4 (AP-4) genes have first been identified in 2009, causing a phenotype termed as AP-4 deficiency syndrome. Since then several patients with overlapping phenotypes, comprised of intellectual disability (ID) and spastic tetraplegia have been reported. To delineate the genotype-phenotype correlation of the AP-4 deficiency syndrome, we add the data from 30 affected individuals from 12 out of 640 Iranian families with ID in whom we detected disease-causing variants in AP-4 complex subunits, using next-generation sequencing. Furthermore, by comparing genotype-phenotype findings of those affected individuals with previously reported patients, we further refine the genotype-phenotype correlation in this syndrome. The most frequent reported clinical findings in the 101 cases consist of ID and/or global developmental delay (97%), speech disorders (92.1%), inability to walk (90.1%), spasticity (77.2%), and microcephaly (75.2%). Spastic tetraplegia has been reported in 72.3% of the investigated patients. The major brain imaging findings are abnormal corpus callosum morphology (63.4%) followed by ventriculomegaly (44.5%). Our result might suggest the AP-4 deficiency syndrome as a major differential diagnostic for unknown hereditary neurodegenerative disorders.


Assuntos
Complexo 4 de Proteínas Adaptadoras/genética , Estudos de Associação Genética , Deficiência Intelectual/genética , Quadriplegia/genética , Complexo 4 de Proteínas Adaptadoras/deficiência , Adolescente , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Estudos de Coortes , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Irã (Geográfico)/epidemiologia , Masculino , Mutação/genética , Linhagem , Fenótipo , Quadriplegia/diagnóstico por imagem , Quadriplegia/patologia
5.
Clin Genet ; 100(1): 59-78, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713422

RESUMO

Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.


Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Perda Auditiva/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Sequenciamento do Exoma/métodos , Adulto Jovem
6.
J Hum Genet ; 65(7): 609-617, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32231217

RESUMO

Mutations in the CDC14A (Cell Division-Cycle 14A) gene, which encodes a conserved dual-specificity protein tyrosine phosphatase, have been identified as a cause of autosomal recessive non-syndromic hearing loss (DFNB32) and hearing impairment infertility male syndrome (HIIMS). We used next-generation sequencing to screen six deaf probands from six families segregating sensorineural moderate-to-profound hearing loss. Data analysis and variant prioritization were completed using a custom bioinformatics pipeline. We identified three homozygous loss of function variants (p.Arg345Ter, p.Arg376Ter, and p.Ala451Thrfs*43) in the CDC14A gene, segregating with deafness in each family. Of the six families, four segregated the p.Arg376Ter mutation, one family segregated the p.Arg345Ter mutation and one family segregated a novel frameshift (p.Ala451Thrfs*43) mutation. In-depth phenotyping of affected individuals ruled out secondary syndromic findings. This study implicates the p.Arg376Ter mutation might be as a founder mutation in the Iranian population. It also provides the first semen analysis for deaf males carrying mutations in exon 11 of CDC14A and reveals a genotype-phenotype correlation that delineates between DFNB32 and HIIMS. The clinical results from affected males suggest the NM_033313.2 transcript alone is sufficient for proper male fertility, but not for proper auditory function. We conclude that DFNB32 is a distinct phenotypic entity in males.


Assuntos
Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Infertilidade Masculina/genética , Proteínas Tirosina Fosfatases/genética , Adolescente , Adulto , Diagnóstico Diferencial , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Perda Auditiva/complicações , Perda Auditiva/diagnóstico , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infertilidade Masculina/complicações , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/patologia , Irã (Geográfico) , Masculino , Linhagem , Adulto Jovem
7.
Mol Psychiatry ; 24(7): 1027-1039, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29302074

RESUMO

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.


Assuntos
Genes Recessivos/genética , Deficiência Intelectual/genética , Adulto , Consanguinidade , Exoma/genética , Família , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Mapas de Interação de Proteínas/genética , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
8.
Hum Mutat ; 40(11): 1968-1984, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343797

RESUMO

Considering the application of human genome variation databases in precision medicine, population-specific genome projects are continuously being developed. However, the Middle Eastern population is underrepresented in current databases. Accordingly, we established Iranome database (www.iranome.com) by performing whole exome sequencing on 800 individuals from eight major Iranian ethnic groups representing the second largest population of Middle East. We identified 1,575,702 variants of which 308,311 were novel (19.6%). Also, by presenting higher frequency for 37,384 novel or known rare variants, Iranome database can improve the power of molecular diagnosis. Moreover, attainable clinical information makes this database a good resource for classifying pathogenicity of rare variants. Principal components analysis indicated that, apart from Iranian-Baluchs, Iranian-Turkmen, and Iranian-Persian Gulf Islanders, who form their own clusters, rest of the population were genetically linked, forming a super-population. Furthermore, only 0.6% of novel variants showed counterparts in "Greater Middle East Variome Project", emphasizing the value of Iranome at national level by releasing a comprehensive catalog of Iranian genomic variations and also filling another gap in the catalog of human genome variations at international level. We introduce Iranome as a resource which may also be applicable in other countries located in neighboring regions historically called Greater Iran (Persia).


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Etnicidade/genética , Genoma Humano , Genômica , Navegador , Variação Genética , Genética Populacional , Genômica/métodos , Genótipo , Geografia , Humanos , Irã (Geográfico) , Oriente Médio , Anotação de Sequência Molecular
9.
Clin Genet ; 95(6): 718-725, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950035

RESUMO

Neurodevelopmental delay and intellectual disability (ID) can arise from numerous genetic defects. To date, variants in the EXOSC gene family have been associated with such disorders. Using next-generation sequencing (NGS), known and novel variants in this gene family causing autosomal recessive ID (ARID) have been identified in five Iranian families. By collecting clinical information on these families and comparing their phenotypes with previously reported patients, we further describe the clinical variability of ARID resulting from alterations in the EXOSC gene family, and emphasize the role of RNA processing dysregulation in ARID.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Genes Recessivos , Deficiência Intelectual/genética , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Família , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Irã (Geográfico) , Masculino , Mutação , Linhagem , Sequenciamento do Exoma
10.
Clin Genet ; 95(1): 151-159, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315573

RESUMO

In outbred Western populations, most individuals with intellectual disability (ID) are sporadic cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is very rare. Because of the high rate of parental consanguinity, which raises the risk for ARID and other recessive disorders, the prevalence of ID is significantly higher in near- and middle-east countries. Indeed, homozygosity mapping and sequencing in consanguineous families have already identified a plethora of ARID genes, but because of the design of these studies, DNMs could not be systematically assessed, and the proportion of cases that are potentially preventable by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This prompted us to perform whole-exome sequencing in 100 sporadic ID patients from Iran and their healthy consanguineous parents. In 61 patients, we identified apparently causative changes in known ID genes. Of these, 44 were homozygous recessive and 17 dominant DNMs. Assuming that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk about 3.6-fold, and about 4.1 to 4.25-fold for children of first-cousin unions. These results do not rhyme with recent opinions that consanguinity-related health risks are generally small and have been "overstated" in the past.


Assuntos
Genes Recessivos , Endogamia , Deficiência Intelectual/genética , Consanguinidade , Exoma/genética , Família , Feminino , Homozigoto , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Irã (Geográfico)/epidemiologia , Masculino , Oriente Médio/epidemiologia , Mutação , Linhagem , Sequenciamento do Exoma
11.
J Med Genet ; 52(12): 823-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26445815

RESUMO

BACKGROUND: Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. DESIGN: Using a custom targeted genomic enrichment (TGE) panel, we simultaneously interrogated all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. RESULTS: We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23 and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and three novel CNV. Several variants represent founder mutations. CONCLUSION: This study attests to the power of TGE and massively parallel sequencing as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery.


Assuntos
Perda Auditiva/genética , Conexina 26 , Conexinas , Consanguinidade , Efeito Fundador , Frequência do Gene , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Perda Auditiva/patologia , Humanos , Irã (Geográfico)
12.
Am J Med Genet A ; 167A(12): 2957-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416264

RESUMO

Deafness is the most frequent sensory disorder. With over 90 genes and 110 loci causally implicated in non-syndromic hearing loss, it is phenotypically and genetically heterogeneous. Here, we investigate the genetic etiology of deafness in four families of Iranian origin segregating autosomal recessive non-syndromic hearing loss (ARNSHL). We used a combination of linkage analysis, homozygosity mapping, and a targeted genomic enrichment platform to simultaneously screen 90 known deafness-causing genes for pathogenic variants. Variant segregation was confirmed by Sanger sequencing. Linkage analysis and homozygosity mapping showed segregation with the DFNB57 locus on chromosome 10 in two families. Targeted genomic enrichment with massively parallel sequencing identified causal variants in PDZD7: a homozygous missense variant (p.Gly103Arg) in one family and compound heterozygosity for missense (p.Met285Arg) and nonsense (p.Tyr500Ter) variants in the second family. Screening of two additional families identified two more variants: (p.Gly228Arg) and (p.Gln526Ter). Variant segregation with the hearing loss phenotype was confirmed in all families by Sanger sequencing. The missense variants are predicted to be deleterious, and the two nonsense mutations produce null alleles. This report is the first to show that mutations in PDZD7 cause ARNSHL, a finding that offers addition insight into the USH2 interactome. We also describe a novel likely disease-causing mutation in CIB2 and illustrate the complexity associated with gene identification in diseases that exhibit large genetic and phenotypic heterogeneity.


Assuntos
Proteínas de Transporte/genética , Surdez/genética , Perda Auditiva/genética , Mutação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cromossomos Humanos Par 10 , Feminino , Genes Recessivos , Heterogeneidade Genética , Ligação Genética , Haplótipos , Heterozigoto , Homozigoto , Humanos , Masculino , Modelos Moleculares , Linhagem
13.
Arch Iran Med ; 27(2): 79-88, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619031

RESUMO

BACKGROUND: The study of Y-chromosomal variations provides valuable insights into male susceptibility in certain diseases like cardiovascular disease (CVD). In this study, we analyzed paternal lineage in different Iranian ethnic groups, not only to identify developing medical etiology, but also to pave the way for gender-specific targeted strategies and personalized medicine in medical genetic research studies. METHODS: The diversity of eleven Iranian ethnic groups was studied using 27 Y-chromosomal short tandem repeat (Y-STR) haplotypes from Y-filer® Plus kit. Analysis of molecular variance (AMOVA) based on pair-wise RST along with multidimensional scaling (MDS) calculation and Network phylogenic analysis was employed to quantify the differences between 503 unrelated individuals from each ethnicity. RESULTS: Results from AMOVA calculation confirmed that Gilaks and Azeris showed the largest genetic distance (RST=0.35434); however, Sistanis and Lurs had the smallest considerable genetic distance (RST=0.00483) compared to other ethnicities. Although Azeris had a considerable distance from other ethnicities, they were still close to Turkmens. MDS analysis of ethnic groups gave the indication of lack of similarity between different ethnicities. Besides, network phylogenic analysis demonstrated insignificant clustering between samples. CONCLUSION: The AMOVA analysis results explain that the close distance of Azeris and Turkmens may be the effect of male-dominant expansions across Central Asia that contributed to historical and demographics of populations in the region. Insignificant differences in network analysis could be the consequence of high mutation events that happened in the Y-STR regions over the years. Considering the ethnic group affiliations in medical research, our results provided an understanding and characterization of Iranian male population for future medical and population genetics studies.


Assuntos
Pesquisa Biomédica , Etnicidade , Humanos , Masculino , Etnicidade/genética , Haplótipos , Irã (Geográfico) , Análise de Variância
14.
Arch Iran Med ; 26(3): 176-180, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543941

RESUMO

Genetic analysis of non-syndromic hearing loss (NSHL) has been challenged due to marked clinical and genetic heterogeneity. Today, advanced next-generation sequencing (NGS) technologies, such as exome sequencing (ES), have drastically increased the efficacy of gene identification in heterogeneous Mendelian disorders. Here, we present the utility of ES and re-evaluate the phenotypic data for identifying candidate causal variants for previously unexplained progressive moderate to severe NSHL in an extended Iranian family. Using this method, we identified a known heterozygous nonsense variant in exon 26 of the DIAPH1 gene (MIM: 602121), which led to "Deafness, autosomal dominant 1, with or without thrombocytopenia; DFNA1" (MIM: 124900) in this large family in the absence of GJB2 disease-causing variants and also OtoSCOPE-negative results. To the best of our knowledge, this nonsense variant (NM_001079812.3):c.3610C>T (p.Arg1204Ter) is the first report of the DIAPH1 gene variant for autosomal dominant non-syndromic hearing loss (ADNSHL) in Iran.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Irã (Geográfico) , Códon sem Sentido , Surdez/genética , Linhagem , Mutação , Forminas/genética
15.
Arch Iran Med ; 26(4): 186-197, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301078

RESUMO

BACKGROUND: Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS: First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS: We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION: To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Irã (Geográfico)/epidemiologia , Família , Mutação , Linhagem , Consanguinidade , Genes Recessivos
16.
Arch Iran Med ; 26(5): 279-284, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301092

RESUMO

Charcot-Marie-Tooth disease type 4G (CMT4G) was first reported in Balkan Gypsies as a myelinopathy starting with progressive distal lower limb weakness, followed by upper limb involvement and prominent distal sensory impairment later in the patient's life. So far, CMT4G has been only reported in European Roma communities with two founder homozygous variants; g.9712G>C and g.11027G>A, located in the 5'-UTR of the HK1 gene. Here, we present the first Iranian CMT4G patient manifesting progressive distal lower limb weakness from 11 years of age and diagnosed with chronic demyelinating sensorimotor polyneuropathy. Whole-exome sequencing for this patient revealed a homozygous c.19C>T (p. Arg7*) variant in the HK1 gene. This report expands the mutational spectrum of the HK1-related CMT disorder and provides supporting evidence for the observation of CMT4G outside the Roma population. Interestingly, the same Arg7* variant is recently observed in another unrelated Pakistani CMT patient, proposing a possible prevalence of this variant in the Middle Eastern populations.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Irã (Geográfico) , Mutação , Linhagem , Fenótipo
17.
Am J Med Genet A ; 158A(8): 1857-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22736430

RESUMO

MYO15A is located at the DFNB3 locus on chromosome 17p11.2, and encodes myosin-XV, an unconventional myosin critical for the formation of stereocilia in hair cells of cochlea. Recessive mutations in this gene lead to profound autosomal recessive nonsyndromic hearing loss (ARNSHL) in humans and the shaker2 (sh2) phenotype in mice. Here, we performed a study on 140 Iranian families in order to determine mutations causing ARNSHL. The families, who were negative for mutations in GJB2, were subjected to linkage analysis. Eight of these families showed linkage to the DFNB3 locus, suggesting a MYO15A mutation frequency of 5.71% in our cohort of Iranian population. Subsequent sequencing of the MYO15A gene led to identification of 7 previously unreported mutations, including 4 missense mutations, 1 nonsense mutation, and 2 deletions in different regions of the myosin-XV protein.


Assuntos
Surdez/genética , Genes Recessivos , Mutação , Miosinas/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 17 , Conexina 26 , Conexinas , Feminino , Humanos , Irã (Geográfico) , Masculino , Linhagem
18.
Arch Iran Med ; 25(9): 600-608, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543885

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD), one of the common inherited disorders in humans, is characterized by the development and enlargement of renal cysts, often leading to end-stage renal disease (ESRD). In this study, Iranian ADPKD families were subjected to high-throughput DNA sequencing to find potential causative variants facilitating the way toward risk assessment and targeted therapy. METHODS: Our protocol was based on the targeted next generation sequencing (NGS) panel previously developed in our center comprising 12 genes involved in PKD. This panel has been applied to investigate the genetic causes of 32 patients with a clinical suspicion of ADPKD. RESULTS: We identified a total of 31 variants for 32 individuals, two of which were each detected in two individuals. Twenty-seven out of 31 detected variants were interpreted as pathogenic/likely pathogenic and the remaining 4 of uncertain significance with a molecular diagnostic success rate of 87.5%. Among these variants, 25 PKD1/2 pathogenic/likely pathogenic variants were detected in 32 index patients (78.1%), and variants of uncertain significance in four individuals (12.5% in PKD1/2). The majority of variants was identified in PKD1 (74.2%). Autosomal recessive PKD was identified in one patient, indicating the similarities between recessive and dominant PKD. In concordance with earlier studies, this biallelic PKD1 variant, p.Arg3277Cys, leads to rapidly progressive and severe disease with very early-onset ADPKD. CONCLUSION: Our findings suggest that targeted gene panel sequencing is expected to be the method of choice to improve diagnostic and prognostic accuracy in PKD patients with heterogeneity in genetic background.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Irã (Geográfico) , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/diagnóstico , Canais de Cátion TRPP/genética
19.
Hum Genet ; 129(2): 141-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21063731

RESUMO

Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR). As previously reported (Najmabadi et al. in Hum Genet 121:43-48, 2007), this led us to the identification of 12 novel ARMR loci, 8 of which had a significant LOD score (OMIM: MRT5-12). In the meantime, we and others have found causative gene defects in two of these intervals. Moreover, as reported here, tripling the size of our cohort has enabled us to identify 27 additional unrelated families with NS-ARMR and single-linkage intervals; 14 of these define novel loci for non-syndromic ARMR. Altogether, 13 out of 39 single linkage intervals observed in our cohort were found to cluster at 6 different loci on chromosomes, i.e., 1p34, 4q27, 5p15, 9q34, 11p11-q13 and 19q13, respectively. Five of these clusters consist of two significantly overlapping linkage intervals, and on chr 1p34, three single linkage intervals coincide, including the previously described MRT12 locus. The probability for this distribution to be due to chance is only 1.14 × 10(-5), as shown by Monte Carlo simulation. Thus, in contrast to our previous conclusions, these novel data indicate that common molecular causes of NS-ARMR do exist, and in the Iranian population, the most frequent ones may well account for several percent of the patients. These findings will be instrumental in the identification of the underlying genes.


Assuntos
Deficiência Intelectual/genética , Mutação , Transtornos Cromossômicos , Família , Genes Recessivos , Irã (Geográfico) , Método de Monte Carlo
20.
Arch Iran Med ; 23(12): 842-847, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356342

RESUMO

BACKGROUND: Recently, we have reported mutations in LARP7 gene, leading to neurodevelopmental disorders (NDDs), the most frequent cause of disability in children with a broad phenotype spectrum and diverse genetic landscape. METHODS: Here, we present two Iranian patients from consanguineous families with syndromic intellectual disability, facial dysmorphism, and short stature. RESULTS: Whole-exome sequencing (WES) revealed a novel homozygous stop-gain (c.C925T, p.R309X) variant and a previously known homozygous acceptor splice-site (c.1669-1_1671del) variant in LARP7 gene, indicating the diagnosis of Alazami syndrome. CONCLUSION: These identified variants in patients with Alazami syndrome were consistent with previously reported loss of function variants in LARP7 and provide further evidence that loss of function of LARP7 is the disease mechanism.


Assuntos
Fácies , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Ribonucleoproteínas/genética , Adolescente , Adulto , Feminino , Homozigoto , Humanos , Irã (Geográfico) , Masculino , Mutação , Fenótipo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA