Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101049, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654933

RESUMO

Improving the pharmacokinetics of intra-articularly injected therapeutics is a major challenge in treating joint disease. Small molecules and biologics are often cleared from the joint within hours, which greatly reduces their therapeutic efficacy. Furthermore, they are often injected at high doses, which can lead to local cytotoxicity and systemic side effects. In this study, we present modular polymer-drug conjugates of zwitterionic poly(carboxybetaine acrylamide) (pCBAA) and the anti-inflammatory glucocorticoid dexamethasone (DEX) to create cartilage-targeted carriers with slow-release kinetics. pCBAA polymers showed excellent cartilage penetration (full thickness in 1 h) and retention (>50 % after 2 weeks of washing). DEX was loaded onto the pCBAA polymer by employing two different DEX-bearing comonomers to produce pCBAA-co-DEX conjugates with different release kinetics. The slow-releasing conjugate showed zero-order release kinetics in PBS over 70 days. The conjugates elicited no oxidative stress on chondrocytes compared to dose-matched free DEX and protected bovine cartilage explants from the inflammatory response after treatment with IL-1ß. By combining cartilage targeting and sustained drug release properties, the pCBAA-co-DEX conjugates solve many issues of today's intra-articular therapeutics, which could ultimately enable better long-term clinical outcomes with fewer side effects.

2.
Biofabrication ; 16(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38176081

RESUMO

Foreign body response (FBR) is a pervasive problem for biomaterials used in tissue engineering. Zwitterionic hydrogels have emerged as an effective solution to this problem, due to their ultra-low fouling properties, which enable them to effectively inhibit FBRin vivo. However, no versatile zwitterionic bioink that allows for high resolution extrusion bioprinting of tissue implants has thus far been reported. In this work, we introduce a simple, novel method for producing zwitterionic microgel bioink, using alginate methacrylate (AlgMA) as crosslinker and mechanical fragmentation as a microgel fabrication method. Photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) are mechanically fragmented through meshes with aperture diameters of 50 and 90µm to produce microgel bioink. The bioinks made with both microgel sizes showed excellent rheological properties and were used for high-resolution printing of objects with overhanging features without requiring a support structure or support bath. The AlgMA crosslinker has a dual role, allowing for both primary photocrosslinking of the bulk hydrogel as well as secondary ionic crosslinking of produced microgels, to quickly stabilize the printed construct in a calcium bath and to produce a microporous scaffold. Scaffolds showed ∼20% porosity, and they supported viability and chondrogenesis of encapsulated human primary chondrocytes. Finally, a meniscus model was bioprinted, to demonstrate the bioink's versatility at printing large, cell-laden constructs which are stable for furtherin vitroculture to promote cartilaginous tissue production. This easy and scalable strategy of producing zwitterionic microgel bioink for high resolution extrusion bioprinting allows for direct cell encapsulation in a microporous scaffold and has potential forin vivobiocompatibility due to the zwitterionic nature of the bioink.


Assuntos
Bioimpressão , Microgéis , Humanos , Alicerces Teciduais/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Hidrogéis/química , Metacrilatos , Impressão Tridimensional
3.
Adv Healthc Mater ; : e2301831, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501337

RESUMO

Zwitterionic hydrogels have high potential for cartilage tissue engineering due to their ultra-hydrophilicity, nonimmunogenicity, and superior antifouling properties. However, their application in this field has been limited so far, due to the lack of injectable zwitterionic hydrogels that allow for encapsulation of cells in a biocompatible manner. Herein, a novel strategy is developed to engineer cartilage employing zwitterionic granular hydrogels that are injectable, self-healing, in situ crosslinkable and allow for direct encapsulation of cells with biocompatibility. The granular hydrogel is produced by mechanical fragmentation of bulk photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA), or a mixture of CBAA and zwitterionic sulfobetaine methacrylate (SBMA). The produced microgels are enzymatically crosslinkable using horseradish peroxidase, to quickly stabilize the construct, resulting in a microporous hydrogel. Encapsulated human primary chondrocytes are highly viable and able to proliferate, migrate, and produce cartilaginous extracellular matrix (ECM) in the zwitterionic granular hydrogel. It is also shown that by increasing hydrogel porosity and incorporation of SBMA, cell proliferation and ECM secretion are further improved. This strategy is a simple and scalable method, which has high potential for expanding the versatility and application of zwitterionic hydrogels for diverse tissue engineering applications.

4.
Acta Biomater ; 166: 69-84, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37030622

RESUMO

Cell-based therapies for articular cartilage lesions are expensive and time-consuming; clearly, a one-step procedure to induce endogenous repair would have significant clinical benefits. Acellular heterogeneous granular hydrogels were explored for their injectability, cell-friendly cross-linking, and ability to promote migration, as well as to serve as a scaffold for depositing cartilage extracellular matrix. The hydrogels were prepared by mechanical sizing of bulk methacrylated hyaluronic acid (HAMA) and bulk HAMA incorporating sulfated HAMA (SHAMA). SHAMA's negative charges allowed for the retention of positively charged growth factors (GFs) (e.g., TGFB3 and PDGF-BB). Mixtures of HAMA and GF-loaded SHAMA microgels were annealed by enzymatic cross-linking, forming heterogeneous granular hydrogels with GF deposits. The addition of GF loaded sulfated microislands guided cell migration and enhanced chondrogenesis. Granular heterogeneous hydrogels showed increased matrix deposition and cartilage tissue maturation compared to bulk or homogeneous granular hydrogels. This advanced material provides an ideal 3D environment for guiding cell migration and differentiation into cartilage. STATEMENT OF SIGNIFICANCE: Acellular materials which promote regeneration are of great interest for repair of cartilage defects, and they are more cost- and time-effective compared to current cell-based therapies. Here we develop an injectable, granular hydrogel system which promotes cell migration from the surrounding tissue, facilitating endogenous repair. The hydrogel architecture and chemistry were optimized to increase cell migration and extracellular matrix deposition. The present study provides quantitative data on the effect of microgel size and chemical modification on cell migration, growth factor retention and tissue maturation.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Condrogênese , Sulfatos/farmacologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA