Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Pharmacol Exp Ther ; 390(1): 108-115, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38834354

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) possess anti-inflammatory, antipyretic, and analgesic properties and are among the most commonly used drugs. Although the cause of NSAID-induced gastric ulcers is well understood, the mechanism behind small intestinal ulcers remains elusive. In this study, we examined the mechanism through which indomethacin (IM), a prominent NSAID, induces small intestinal ulcers, both in vitro and in vivo. In IEC6 cells, a small intestinal epithelial cell line, IM treatment elevated levels of LC3-II and p62. These expression levels remained unaltered after treatment with chloroquine or bafilomycin, which are vacuolar ATPase (V-ATPase) inhibitors. IM treatment reduced the activity of cathepsin B, a lysosomal protein hydrolytic enzyme, and increased the lysosomal pH. There was a notable increase in subcellular colocalization of LC3 with Lamp2, a lysosome marker, post IM treatment. The increased lysosomal pH and decreased cathepsin B activity were reversed by pretreatment with rapamycin (Rapa) or glucose starvation, both of which stabilize V-ATPase assembly. To validate the in vitro findings in vivo, we established an IM-induced small intestine ulcer mouse model. In this model, we observed multiple ulcerations and heightened inflammation following IM administration. However, pretreatment with Rapa or fasting, which stabilize V-ATPase assembly, mitigated the IM-induced small intestinal ulcers in mice. Coimmunoprecipitation studies demonstrated that IM binds to V-ATPase in vitro and in vivo. These findings suggest that IM induces small intestinal injury through lysosomal dysfunction, likely due to the disassembly of lysosomal V-ATPase caused by direct binding. Moreover, Rapa or starvation can prevent this injury by stabilizing the assembly. SIGNIFICANCE STATEMENT: This study elucidates the largely unknown mechanisms behind small intestinal ulceration induced by indomethacin and reveals the involvement of lysosomal dysfunction via vacuolar ATPase disassembly. The significance lies in identifying potential preventative interventions, such as rapamycin treatment or glucose starvation, offering pivotal insights that extend beyond nonsteroidal anti-inflammatory drugs-induced ulcers to broader gastrointestinal pathologies and treatments, thereby providing a foundation for novel therapeutic strategies aimed at a wide array of gastrointestinal disorders.


Assuntos
Indometacina , Lisossomos , Sirolimo , ATPases Vacuolares Próton-Translocadoras , Animais , Indometacina/toxicidade , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Sirolimo/farmacologia , Camundongos , Masculino , Ratos , Anti-Inflamatórios não Esteroides/farmacologia , Catepsina B/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Úlcera/induzido quimicamente , Úlcera/patologia , Úlcera/metabolismo
2.
J Biol Chem ; 295(50): 17071-17082, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33023909

RESUMO

Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 O-GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 O-GlcNAcylation impaired SOCE activity. To determine the molecular basis, we established STIM1-knockout HEK293 (STIM1-KO-HEK) cells using the CRISPR/Cas9 system and transfected STIM1 WT (STIM1-KO-WT-HEK), S621A (STIM1-KO-S621A-HEK), or T626A (STIM1-KO-T626A-HEK) cells. Using these cells, we examined the possible O-GlcNAcylation sites of STIM1 to determine whether the sites were O-GlcNAcylated. Co-immunoprecipitation analysis revealed that Ser621 and Thr626 were O-GlcNAcylated and that Thr626 was O-GlcNAcylated in the steady state but Ser621 was not. The SOCE activity in STIM1-KO-S621A-HEK and STIM1-KO-T626A-HEK cells was lower than that in STIM1-KO-WT-HEK cells because of reduced phosphorylation at Ser621 Treatment with the O-GlcNAcase inhibitor Thiamet G or O-GlcNAc transferase (OGT) transfection, which increases O-GlcNAcylation, reduced SOCE activity, whereas treatment with the OGT inhibitor ST045849 or siOGT transfection, which decreases O-GlcNAcylation, also reduced SOCE activity. Decrease in SOCE activity due to increase and decrease in O-GlcNAcylation was attributable to reduced phosphorylation at Ser621 These data suggest that both decrease in O-GlcNAcylation at Thr626 and increase in O-GlcNAcylation at Ser621 in STIM1 lead to impairment of SOCE activity through decrease in Ser621 phosphorylation. Targeting STIM1 O-GlcNAcylation could provide a promising treatment option for the related diseases, such as neurodegenerative diseases.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Acilação , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Fosforilação , Serina , Molécula 1 de Interação Estromal/genética
3.
Biol Pharm Bull ; 44(5): 669-677, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33612567

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive condition that frequently results in right ventricular (RV) remodeling. The objectives of this study are to investigate effects of rivaroxaban on RV remodeling in a rat model of PAH, created with Sugen5416 and chronic hypoxia, and the in vitro effects of rivaroxaban on human cardiac microvascular endothelial cells (HCMECs). To create the PAH model, male Sprague-Dawley rats were subcutaneously injected with Sugen5416 (20 mg/kg) and exposed to 2 weeks of hypoxia (10% O2), followed by 2 weeks of exposure to normoxia. The animals were then divided into 2 groups with or without administration of rivaroxaban (12 mg/kg/d) for a further 4 weeks. HCMECs were cultured under hypoxic conditions (37 °C, 1% O2, 5% CO2) with Sugen5416 and with or without rivaroxaban. In the model rats, RV systolic pressure and Fulton index increased by hypoxia with Sugen5416 were significantly decreased when treated with rivaroxaban. In HCMECs, hypoxia with Sugen5416 increased the expression of protease-activated receptor-2 (PAR-2) and the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF-κB), while treatment with rivaroxaban significantly suppressed the expression of these proteins. Rivaroxaban attenuated RV remodeling in a rat model of PAH by reducing ERK, JNK and NF-κB activation. Rivaroxaban has the possibility of providing additive effects on RV remodeling in patients with PAH.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores do Fator Xa/uso terapêutico , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Rivaroxabana/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inibidores do Fator Xa/farmacologia , Humanos , Hipóxia , Indóis , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , NF-kappa B/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Pirróis , Ratos Sprague-Dawley , Rivaroxabana/farmacologia
4.
J Biol Chem ; 294(51): 19577-19588, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31723030

RESUMO

Understanding the specific properties of human induced pluripotent stem cells (iPSCs) is important for quality control of iPSCs. Having incidentally discovered that overexpression of plasma membrane Na+/H+ exchanger 1 (NHE1) induces cell death in iPSCs, we investigated the mechanism of NHE1-induced cell death. Doxycycline-induced NHE1 overexpression arrested cell growth, and nearly all cells were killed by a necrotic process within 72 h. NHE1 overexpression led to sustained activation of Rho-associated coiled-coil kinase (ROCK), accompanied by dramatic changes in cell shape, cell elongation, and swelling of peripheral cells in iPSC colonies, as well as marked stress fiber formation. The ROCK inhibitor Y27632 reduced NHE1-induced cell death. ROCK-dependent phenotypes were suppressed by a loss-of-function mutation of NHE1 and inhibited by an inhibitor of NHE1 activity, indicating that NHE1-mediated transport activity is required. Moreover, ROCK was activated by trimethylamine treatment-mediated cytosolic alkalinization and accumulated in the plasma membrane near NHE1 in peripheral iPSCs of cell colonies. By contrast, cell death did not occur in mesendoderm-like cells that had differentiated from iPSCs, indicating that the NHE1-mediated effects were specific for iPSCs. These results suggest that NHE1 overexpression specifically induces death of iPSCs via sustained ROCK activation, probably caused by an increase in local pH near NHE1. Finally, monensin, a Na+/H+ exchange ionophore, selectively killed iPSCs, suggesting that monensin could help eliminate iPSCs that remain after differentiation, a strategy that might be useful for improving regenerative medicine.


Assuntos
Morte Celular , Regulação Enzimológica da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Diferenciação Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Citosol/metabolismo , Endoderma/citologia , Humanos , Concentração de Íons de Hidrogênio , Mesoderma/citologia , Metilaminas/farmacologia , Necrose , Fosforilação , Piridinas/farmacologia
5.
Biochem Biophys Res Commun ; 521(3): 632-638, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31679690

RESUMO

O-GlcNAcylation is a dynamic and reversible post-translational modification of cytonuclear molecules that regulates cellular signaling. Elevated O-GlcNAcylation is a general property of cancer and plays a critical role in cancer progression. We previously showed that the expression of FOXM1, a critical oncogenic transcription factor widely overexpressed in solid tumors, was elevated in MKN45 cells, a human gastric cancer cell line, by the O-GlcNAcase inhibitor Thiamet G (TMG), which induces augmented O-GlcNAcylation. Here, we identified FBXL2 E3 ubiquitin ligase as a new target of O-GlcNAcylation. Consistent with the results in MKN45 cells, FOXM1 expression was increased, accompanied by its decreased ubiquitination and degradation by TMG in the other gastric cancer cell lines, including NUGC-3 cells. We found that FBXL2 ubiquitinated FOXM1, and the interaction with FBXL2 and ubiquitination of FOXM1 were reduced by TMG in NUGC-3 cells. Interestingly, FBXL2 was also ubiquitinated, which was promoted by TMG in the cells. Moreover, FOXM1 expression and cell proliferation were reduced in FBXL2-induced NUGC-3 cells, and the reductions were attenuated by TMG, indicating that FOXM1 was stabilized by O-GlcNAcylation-mediated degradation of FBXL2 to induce cancer progression. These data suggest that elevated O-GlcNAcylation contributes to cancer progression by suppressing FBXL2-mediated degradation of FOXM1.


Assuntos
Acetilglucosamina/metabolismo , Proteínas F-Box/metabolismo , Proteína Forkhead Box M1/metabolismo , Neoplasias Gástricas/metabolismo , Acilação , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Humanos , Estabilidade Proteica , Proteólise , Neoplasias Gástricas/patologia , Ubiquitinação
6.
Proc Natl Acad Sci U S A ; 113(44): 12478-12483, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27738243

RESUMO

Developmental signaling molecules are used for cell fate determination, and understanding how their combinatorial effects produce the variety of cell types in multicellular organisms is a key problem in biology. Here, we demonstrate that the combination of leukemia inhibitory factor (LIF), bone morphogenetic protein 4 (BMP4), lysophosphatidic acid (LPA), and ascorbic acid (AA) efficiently converts mouse primed pluripotent stem cells (PSCs) into naive PSCs. Signaling by the lipid LPA through its receptor LPAR1 and downstream effector Rho-associated protein kinase (ROCK) cooperated with LIF signaling to promote this conversion. BMP4, which also stimulates conversion to naive pluripotency, bypassed the need for exogenous LPA by increasing the activity of the extracellular LPA-producing enzyme autotaxin (ATX). We found that LIF and LPA-LPAR1 signaling affect the abundance of signal transducer and activator of transcription 3 (STAT3), which induces a previously unappreciated Kruppel-like factor (KLF)2-KLF4-PR domain 14 (PRDM14) transcription factor circuit key to establish naive pluripotency. AA also affects this transcription factor circuit by controlling PRDM14 expression. Thus, our study reveals that ATX-mediated autocrine lipid signaling promotes naive pluripotency by intersecting with LIF and BMP4 signaling.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Fator Inibidor de Leucemia/farmacologia , Lisofosfolipídeos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Ácido Ascórbico/farmacologia , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Vitaminas/farmacologia
7.
Biochem Biophys Res Commun ; 495(2): 1681-1687, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29196265

RESUMO

O-GlcNAcylation is a dynamic post-translational modification of cytonuclear proteins for intracellular signaling. Elevated O-GlcNAcylation is a general feature of cancer and contributes to cancer progression, and recent studies indicate the contribution to increasing incidence of various types of cancer in diabetic patients. However, the role of O-GlcNAcylation in tumor progression is not fully elucidated. Forkhead box M1 (FOXM1), a master mitotic transcription factor, has been implicated in all major hallmarks of cancer, and is wildly expressed in solid tumors. Given that FOXM1 expression was reported to be elevated in gastric cancer, we examined the effect of high glucose or an inhibitor of O-GlcNAc hydrolase, Thiamet G (TMG), on FOXM1 protein expression in a human gastric cancer cell line, MKN45 cells, and confirmed that FOXM1 protein level and the cell proliferation were upregulated. To investigate the molecular mechanisms by which FOXM1 protein expression is regulated by O-GlcNAcylation, the effect of high glucose and TMG on FOXM1 ubiquitination was examined in MKN45 cells. As a result, the ubiquitination and degradation of FOXM1 protein were both suppressed by high glucose and TMG treatment. However, the O-GlcNAcylation was not detected on FOXM1 but not on GSK-3ß. High glucose and TMG treatment increased phospho-serine 9 GSK-3ß, an inactive form, and the degradation of FOXM1 protein was suppressed by treatment of GSK-3ß inhibitors in MKN45 cells. Taken together, we suggest that high glucose and elevated O-GlcNAcylation stabilize FOXM1 protein by its reduced degradation via GSK-3ß inactivation in MKN45 cells, suggesting that the higher risk of gastric cancer in diabetic patients could be partially due to O-GlcNAcylation-mediated FOXM1 stabilization.


Assuntos
Proteína Forkhead Box M1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Gástricas/metabolismo , Acetilglucosamina/metabolismo , Acilação , Linhagem Celular Tumoral , Proliferação de Células , Complicações do Diabetes/etiologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Inibidores Enzimáticos/farmacologia , Proteína Forkhead Box M1/química , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/química , Humanos , Processamento de Proteína Pós-Traducional , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Piranos/farmacologia , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia , Tiazóis/farmacologia , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo
8.
Biochem Biophys Res Commun ; 495(1): 904-910, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29154826

RESUMO

W9 is a peptide that abrogates osteoclast differentiation via blockade of nuclear factor-κB ligand (RANKL)-RANK signaling, which activates bone formation. However, W9 stimulated osteogenesis in osteoblasts and mesenchymal stem cells. The present study demonstrated that the W9 peptide promoted osteogenic differentiation of human adipose-derived stem cells (hAdSCs) even under non-osteogenic differentiation culture conditions. W9-treated hAdSCs exhibited several osteocalcin-expressing cells and great mineralization compared to the BMP2-treated hAdSCs, which suggests that the W9 peptide had potent osteogenic potential in hAdSCs. W9 treatment also markedly enhanced the phosphorylation of p38, JNK, Erk1/2, and Akt, and BMP2 treatment only enhanced the phosphorylation of p38 and Erk1/2 in hAdSCs. hAdSCs did not express the RANKL gene, but W9 treatment upregulated Runx2, Collagen type 1A1 and TGF receptor genes and increased Akt phosphorylation. These results suggest that the W9-induced potent osteogenic induction was attributed to activation of TGF and the PI3 kinase/Akt signaling pathway in hAdSCs.


Assuntos
Adipócitos/citologia , Diferenciação Celular/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Peptídeos Cíclicos/administração & dosagem , Células-Tronco/fisiologia , Adipócitos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
9.
BMC Cancer ; 18(1): 263, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514603

RESUMO

BACKGROUND: High-grade chondrosarcoma, which has a high incidence of local recurrence and pulmonary metastasis despite surgical resection, is associated with poor prognosis. Therefore, new and effective adjuvant therapies are urgently required for this disease. Gamma-aminobutyric acid (GABA), which acts as a neurotrophic factor during nervous system development, is related to the proliferation and migration of certain cancer cells. The GABAergic system, which is composed of GABA, the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), and GABA receptors, has an important function in nerve growth and development of neural crest. Therefore, the GABAergic system may play important functional roles in the proliferation of chondrosarcoma cells, which are derived from neural crest cells. We examined the anti-tumor effects of the GABAergic system on a chondrosarcoma cell line. METHODS: We evaluated the underlying mechanisms of the anti-tumor effects of the GABAergic system, such as the involvement of different signaling pathways, apoptosis, and cell cycle arrest, in the high-grade chondrosarcoma cell line OUMS-27. In addition, we performed whole-cell patch-clamp recordings for Ca2+ currents and evaluated the changes in intracellular Ca2+ concentration via Ca2+ channels, which are related to the GABAB receptor in high-grade chondrosarcoma cells. RESULTS: The GABAB receptor antagonist CGP had anti-tumor effects on high-grade chondrosarcoma cells in a dose-dependent manner. The activities of caspase 3 and caspase 9 were significantly elevated in CGP-treated cells compared to in untreated cells. The activity of caspase 8 did not differ significantly between untreated cells and CGP-treated cells. However, caspase 8 tended to be up-regulated in CGP-treated cells. The GABAB receptor antagonist exhibited anti-tumor effects at the G1/S cell cycle checkpoint and induced apoptosis via dual inhibition of the PI3/Akt/mTOR and MAPK signaling pathways. Furthermore, the changes in intracellular Ca2+ via GABAB receptor-related Ca2+ channels inhibited the proliferation of high-grade chondrosarcoma cells by inducing and modulating apoptotic pathways. CONCLUSIONS: The GABAB receptor antagonist may improve the prognosis of high-grade chondrosarcoma by exerting anti-tumor effects via different signaling pathways, apoptosis, cell cycle arrest, and Ca2+ channels in high-grade chondrosarcoma cells.


Assuntos
Apoptose , Neoplasias Ósseas/patologia , Cálcio/metabolismo , Proliferação de Células , Condrossarcoma/patologia , Receptores de GABA-B/metabolismo , Neoplasias Ósseas/metabolismo , Ciclo Celular , Condrossarcoma/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Humanos , Técnicas de Patch-Clamp , Receptores de GABA-B/química , Transdução de Sinais , Células Tumorais Cultivadas
10.
J Clin Biochem Nutr ; 62(3): 221-229, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892160

RESUMO

Colon cancer prevalence is high worldwide. O-GlcNAcylation has been associated with tumor growth in various tissues, including the colon; however, its link to carcinogenesis is not fully understood. We investigated the association of O-GlcNAcylation with colon carcinogenesis using a 1,2-dimethylhydrazine/dextran sodium sulfate-induced colon carcinogenesis model in wild type and O-GlcNAc transferase-transgenic (Ogt-Tg) mice. The incidence of colon cancer was significantly lower in Ogt-Tg than in wild type mice. The colonic length was not shortened in Ogt-Tg mice, and NF-κB p65 phosphorylation was strongly suppressed, indicating that reduction of inflammation might be related to the alleviation of colon carcinogenesis. Dextran sodium sulfate-induced acute colitis mice were used to evaluate the effect of O-GlcNAcylation on inflammation at the maximal inflammation period. In Ogt-Tg mice, NF-κB p65 phosphorylation and interleukin-1ß mRNA expression were suppressed. Histochemical staining demonstrated shedding of colon epithelial cells in wild type mice a few days after dextran sodium sulfate treatment, whereas they remained essentially intact in Ogt-Tg mice. There were no significant differences on histochemical staining in the remaining epithelia between groups. These data suggest that O-GlcNAcylation could prevent colon carcinogenesis through reducing acute maximum inflammation, suggesting modulation of O-GlcNAcylation as a novel therapeutic option.

11.
Cancer Sci ; 108(12): 2373-2382, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28973823

RESUMO

Increasing incidence of various cancers has been reported in diabetic patients. O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins at serine/threonine residues (O-GlcNAcylation) is an essential post-translational modification that is upregulated in diabetic patients and has been implicated in tumor growth. However, the mechanisms by which O-GlcNAcylation promotes tumor growth remain unclear. Given that AMP-activated kinase (AMPK) has been thought to play important roles in suppressing tumor growth, we evaluated the involvement of AMPK O-GlcNAcylation on the growth of LoVo cells, a human colon cancer cell line. Results revealed that treatment with Thiamet G (TMG), an inhibitor of O-GlcNAc hydrolase, increased both anchorage-dependent and -independent growth of the cells. O-GlcNAc transferase overexpression also increased the growth. These treatments increased AMPK O-GlcNAcylation in a dose-dependent manner, which led to reduced AMPK phosphorylation and mTOR activation. Chemical inhibition or activation of AMPK led to increased or decreased growth, respectively, which was consistent with the data with genetic inhibition of AMPK. In addition, TMG-mediated acceleration of tumor growth was abolished by both chemical and genetic inhibition of AMPK. To examine the effects of AMPK O-GlcNAcylation in vivo, the LoVo cells were s.c. transplanted onto the backs of BALB/c-nu/nu mice. Injection of TMG promoted the growth and enhanced O-GlcNAcylation of the tumors of the mice. Consistent with in vitro data, AMPK O-GlcNAcylation was increased, which reduced AMPK phosphorylation and resulted in activation of mTOR. Collectively, the higher colon cancer risk of diabetic patients could be due to O-GlcNAcylation-mediated AMPK inactivation and subsequent activation of mTOR.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/fisiologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Acilação , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional
12.
Am J Physiol Heart Circ Physiol ; 312(3): H501-H514, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039202

RESUMO

Activation of CaMKII induces a myriad of biological processes and plays dominant roles in cardiac hypertrophy. Caveolar microdomain contains many calcium/calmodulin-dependent kinase II (CaMKII) targets, including L-type Ca2+ channel (LTCC) complex, and serves as a signaling platform. The location of CaMKII activation is thought to be critical; however, the roles of CaMKII in caveolae are still elusive due to lack of methodology for the assessment of caveolae-specific activation. Our aim was to develop a novel tool for the specific analysis of CaMKII activation in caveolae and to determine the functional role of caveolar CaMKII in cardiac hypertrophy. To assess the caveolae-specific activation of CaMKII, we generated a fusion protein composed of phospholamban and caveolin-3 (cPLN-Cav3) and GFP fusion protein with caveolin-binding domain fused to CaMKII inhibitory peptide (CBD-GFP-AIP), which inhibits CaMKII activation specifically in caveolae. Caveolae-specific activation of CaMKII was detected using phosphospecific antibody for PLN (Thr17). Furthermore, adenoviral overexpression of LTCC ß2a-subunit (ß2a) in NRCMs showed its constitutive phosphorylation by CaMKII, which induces hypertrophy, and that both phosphorylation and hypertrophy are abolished by CBD-GFP-AIP expression, indicating that ß2a phosphorylation occurs specifically in caveolae. Finally, ß2a phosphorylation was observed after phenylephrine stimulation in ß2a-overexpressing mice, and attenuation of cardiac hypertrophy after chronic phenylephrine stimulation was observed in nonphosphorylated mutant of ß2a-overexpressing mice. We developed novel tools for the evaluation and inhibition of caveolae-specific activation of CaMKII. We demonstrated that phosphorylated ß2a dominantly localizes to caveolae and induces cardiac hypertrophy after α1-adrenergic stimulation in mice.NEW & NOTEWORTHY While signaling in caveolae is thought to be important in cardiac hypertrophy, direct evidence is missing due to lack of tools to assess caveolae-specific signaling. This is the first study to demonstrate caveolae-specific activation of CaMKII signaling in cardiac hypertrophy induced by α1-adrenergic stimulation using an originally developed tool.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1 , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cavéolas/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cavéolas/enzimologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transfecção
13.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068413

RESUMO

The E3 ubiquitin ligase, von Hippel-Lindau (VHL), regulates protein expression by polyubiquitination. Although the protein VHL (pVHL) was reported to be involved in the heart function, the underlying mechanism is unclear. Here, we show that pVHL was upregulated in hearts from two types of genetically dilated cardiomyopathy (DCM) mice models. In comparison with the wild-type mouse, both DCM mice models showed a significant reduction in the expression of phospholamban (PLN), a potent inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPase, and enhanced interaction between pVHL and PLN. To clarify whether pVHL is involved in PLN degradation in failing hearts, we used carbonylcyanide m-chlorophenylhydrazone (CCCP), a mitochondrial membrane potential (MMP)-lowering reagent, to mimic the heart failure condition in PLN-expressing HEK293 cells and found that CCCP treatment resulted in PLN degradation and increased interaction between PLN and pVHL. However, these effects were reversed with the addition of N-acetyl-l-cysteine. Furthermore, the co-transfection of VHL and PLN in HEK293 cells decreased PLN expression under oxidative stress, whereas knockdown of VHL increased PLN expression both under normal and oxidative stress conditions. Together, we propose that oxidative stress upregulates pVHL expression to induce PLN degradation in failing hearts.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Estresse Oxidativo , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Regulação para Baixo , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Camundongos
14.
Biochem Biophys Res Commun ; 472(3): 523-30, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26966065

RESUMO

Phospholamban (PLN) regulates cardiac type sarco (endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) via Ser(16)-phosphorylation. During heart failure, PLN expression is downregulated with SERCA2a; however, the mechanism of its regulation is not fully understood. Phosphorylation triggers protein degradation and because PLN phosphorylation is upregulated in failing hearts, we examined whether PLN is degraded by Ser(16)-phosphorylation. Cells overexpressing PLN exhibited its degradation post isoproterenol (Iso), forskolin, or 3-isobutyl-1-methylxanthine (IBMX) addition. Moreover, this degradation was inhibited by a cAMP-dependent protein kinase (PKA) inhibitor--H89. Co-immunoprecipitation revealed that Lys(3) of PLN was oligo-ubiquitinated when ubiquitin was overexpressed, and was degraded by Iso treatment. However, when co-expressed with SERCA2a, oligo-ubiquitinated PLN at Lys(3) was not degraded by Iso treatment. In failing hearts from 16 week-old TgPLN(R9C) mice, oligo-ubiquitinated PLN levels increased and PLN expression was downregulated. Furthermore, SERCA2a mRNA levels in TgPLN(R9C) mice hearts were lower than that in wild type mice; however, PLN mRNA levels showed no changes. In another heart failure model, MG132 treatment reversed PLN degradation. These data suggest that PLN is, at least partially, oligo-ubiquitinated at Lys(3) and degraded through Ser(16)-phosphorylation-mediated poly-ubiquitination during heart failure.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ubiquitinação/fisiologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Fosforilação/fisiologia , Proteólise
15.
Biochem Biophys Res Commun ; 468(4): 671-6, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26551465

RESUMO

Non-steroidal anti-inflammatory drug (NSAID)-induced epithelial cell damage occurs not only in the stomach but also in the intestines and colon. Although several studies have investigated the related mechanism underlying lower gastrointestinal tract injury, the details of this mechanism are still unclear. Since it was reported that protein degradation might play an important role, herein, we focused on one of the major ubiquitin E3 ligases, the von Hippel-Lindau protein (pVHL). To understand whether pVHL is involved in the observed cell damage, we examined whether indomethacin (IM) treatment affects pVHL expression in the rat IEC6 intestinal epithelial cell line. We showed that pVHL was upregulated after IM treatment through increased oxidative stress. pVHL siRNA prevented cell injury after IM treatment. Furthermore, the collagen I and HIF-1α protein band intensities were both decreased after IM treatment, whereas MG132 reversed the proteins' downregulation, indicating that the IM treatment-induced downregulation was due to the degradation through pVHL-mediated polyubiquitination. Co-immunoprecipitation showed that pVHL interacted with both collagen I and HIF-1α. The degradation of collagen I and HIF-1α after IM treatment was reversed by siVHL or a Mn-SOD mimetic, Mn(III)TMPyP. The expression of collagen I and HIF-1α was correlated with pVHL expression level, whereas only HIF-1α, not collagen I, was upregulated after the treatment of a prolyl hydroxylase inhibitor, CoCl2. The effect of pVHL on the intestinal epithelium after IM treatment was also tested in vivo. Western blot analyses were used to test whether pVHL's protein expression level might increase after oral administration of IM to mice, and which showed that IM upregulated pVHL expression and degraded collagen I and HIF-1α, consistent with the data obtained in IEC6 cells. These data suggested that intestinal epithelial cells were injured after IM treatment through the pVHL overexpression-induced degradation of collagen I or HIF-1α. Therefore, pVHL might be a molecular target for IM-induced intestinal epithelial cell injury.


Assuntos
Proteínas de Transporte/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Indometacina/administração & dosagem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Linhagem Celular , Sobrevivência Celular/fisiologia , Proteínas do Citoesqueleto , Relação Dose-Resposta a Droga , Indometacina/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Chaperonas Moleculares
16.
J Pharmacol Exp Ther ; 355(3): 353-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26404472

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause epithelial cell damage in the stomach, intestine, and colon. NSAIDs are reported to induce autophagy and apoptosis in intestinal epithelial cells; however, their role in cell damage is poorly understood. To examine the role of autophagy in cell damage, we used autophagy-related gene Atg5-conditional knockout mice, in which the Atg5 gene is only knocked out in intestinal epithelial cells. In an indomethacin (IM)-induced gastrointestinal ulcer mouse model, intestinal epithelium damage was reduced in Atg5-conditional knockout mice compared with wild-type mice. IM-induced damage in IEC6 rat intestinal epithelial cells was reduced when Atg5 was silenced (IEC6shAtg5 cells). Western blot analyses indicated that IM-induced apoptosis decreased, and the potent, oxidative stress-related extracellular signal-regulated kinase (ERK)/nuclear factor-erythroid2-like2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway was upregulated in IEC6shAtg5 cells. An experiment using a reactive oxygen species (ROS)-sensitive fluorescent dye in IEC6shAtg5 cells revealed that the amount of ROS at the baseline and the rate of increase after IM treatment were lower than in intact IEC6 cells. The mitochondrial membrane potential at the baseline and the reduction rate in IM-treated IEC6shAtg5 cells were lower than in intact IEC6 cells, indicating that autophagy deficiency increased ROS production caused by mitochondrial disturbance. Furthermore, MnTMPyP, a manganese-superoxide dismutase mimetic, significantly inhibited IM-induced autophagy and subsequent apoptosis as well as activation of the ERK/Nrf2/HO-1 pathway. These data suggest that autophagy deficiency and subsequent activation of the ERK/Nrf2/HO-1 pathway diminished IM-induced, apoptosis-mediated intestinal epithelial cell damage, and genetic analyses of single nucleotide polymorphisms in autophagy-related genes could predict NSAID-induced intestinal injury.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Autofagia/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Heme Oxigenase-1/efeitos dos fármacos , Indometacina/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sequestradores de Radicais Livres/farmacologia , Inativação Gênica , Mucosa Intestinal/citologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Proteínas/efeitos dos fármacos , Proteínas/genética , Ratos
17.
Circulation ; 127(1): 63-73, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23204107

RESUMO

BACKGROUND: CXC-chemokine receptor 4 (CXCR4) regulates the retention of stem/progenitor cells in the bone marrow (BM), and the CXCR4 antagonist AMD3100 improves recovery from coronary ligation injury by mobilizing stem/progenitor cells from the BM to the peripheral blood. Thus, we investigated whether AMD3100 also improves recovery from ischemia/reperfusion injury, which more closely mimics myocardial infarction in patients, because blood flow is only temporarily obstructed. METHODS AND RESULTS: Mice were treated with single subcutaneous injections of AMD3100 (5 mg/kg) or saline after ischemia/reperfusion injury. Three days later, histological measurements of the ratio of infarct area to area at risk were smaller in AMD3100-treated mice than in mice administered saline, and echocardiographic measurements of left ventricular function were greater in the AMD3100-treated mice at week 4. CXCR4(+) cells were mobilized for just 1 day in both groups, but the mobilization of sca1(+)/flk1(+) cells endured for 7 days in AMD3100-treated mice compared with just 1 day in the saline-treated mice. AMD3100 upregulated BM levels of endothelial nitric oxide synthase (eNOS) and 2 targets of eNOS signaling, matrix metalloproteinase-9 and soluble Kit ligand. Furthermore, the loss of BM eNOS expression abolished the benefit of AMD3100 on sca1(+)/flk1(+) cell mobilization without altering the mobilization of CXCR4(+) cells, and the cardioprotective effects of AMD3100 were retained in eNOS-knockout mice that had been transplanted with BM from wild-type mice but not in wild-type mice with eNOS-knockout BM. CONCLUSIONS: AMD3100 prolongs BM progenitor mobilization and improves recovery from ischemia/reperfusion injury, and these benefits appear to occur through a previously unidentified link between AMD3100 and BM eNOS expression.


Assuntos
Compostos Heterocíclicos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores CXCR4/antagonistas & inibidores , Animais , Benzilaminas , Transplante de Medula Óssea , Cardiotônicos/farmacologia , Ciclamos , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Biochem Biophys Res Commun ; 446(4): 1102-7, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24680678

RESUMO

Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-ß signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-ß signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.


Assuntos
Tecido Adiposo/citologia , Apoptose , Proliferação de Células , Próstata/patologia , Neoplasias da Próstata/terapia , Células Estromais/transplante , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
19.
Nat Med ; 13(5): 619-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17450150

RESUMO

Autophagy, an evolutionarily conserved process for the bulk degradation of cytoplasmic components, serves as a cell survival mechanism in starving cells. Although altered autophagy has been observed in various heart diseases, including cardiac hypertrophy and heart failure, it remains unclear whether autophagy plays a beneficial or detrimental role in the heart. Here, we report that the cardiac-specific loss of autophagy causes cardiomyopathy in mice. In adult mice, temporally controlled cardiac-specific deficiency of Atg5 (autophagy-related 5), a protein required for autophagy, led to cardiac hypertrophy, left ventricular dilatation and contractile dysfunction, accompanied by increased levels of ubiquitination. Furthermore, Atg5-deficient hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation. On the other hand, cardiac-specific deficiency of Atg5 early in cardiogenesis showed no such cardiac phenotypes under baseline conditions, but developed cardiac dysfunction and left ventricular dilatation one week after treatment with pressure overload. These results indicate that constitutive autophagy in the heart under baseline conditions is a homeostatic mechanism for maintaining cardiomyocyte size and global cardiac structure and function, and that upregulation of autophagy in failing hearts is an adaptive response for protecting cells from hemodynamic stress.


Assuntos
Autofagia , Coração/fisiologia , Células Musculares/fisiologia , Animais , Proteína 5 Relacionada à Autofagia , Peso Corporal , Cardiomegalia/genética , Cardiomegalia/patologia , Ecocardiografia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Células Musculares/citologia , Células Musculares/patologia , Tamoxifeno/farmacologia
20.
Lab Invest ; 93(9): 1036-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23897412

RESUMO

Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions.


Assuntos
Fraturas Ósseas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neovascularização Fisiológica/fisiologia , RNA Interferente Pequeno/metabolismo , Cicatrização/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células , Distribuição de Qui-Quadrado , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histocitoquímica , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fluxometria por Laser-Doppler , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Fenótipo , RNA Interferente Pequeno/genética , Fluxo Sanguíneo Regional , Estatísticas não Paramétricas , Transfecção , Cicatrização/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA