Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 114(5): 951-960, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27888663

RESUMO

Anaerobic digestion (AD) of lignocellulosic materials is commonly limited by the hydrolysis step. Unlike unprocessed lignocellulosic materials, paper and paper board (PPB) are processed for their fabrication. Such modifications may affect their methane yields and methane production rates. Previous studies have investigated the correlation between lignin and biomethane yields of unprocessed lignocellulosic materials; nevertheless, there is limited knowledge regarding the relationship between the AD kinetic parameters and composition of PPB. This study evaluated correlations of methane yields and Monod and Gompertz kinetic parameters with structural carbohydrates, lignin, and ash concentration of five types of PPBs. All components were used as single and combined independent variables in linear regressions to predict methane yield, maximum specific methanogenic activity (SMAmax ), saturation constant (Ks ), and lag phase (λ). Additionally, microbial community profiles were obtained for each PPB assay. Results showed methane yields ranging from 69.2 ± 8.61 to 97.2 ± 2.29% of PPB substrates provided. The highest correlation coefficients were obtained for SMAmax as function of hemicellulose/(lignin + ash) (R2 = 0.86) and for λ as a function of lignin + cellulose (R2 = 0.85). All other parameters exhibited weaker correlations (R2 ≤ 0.77). Relative abundance analyses revealed no major changes in the community profile for each of the substrates evaluated. The overall findings of this study are: (i) combinations of structural carbohydrates, lignin, and ash used as ratios of degradable to either non-degradable or slowly degradable fractions predict AD kinetic parameters of PPB materials better than single independent variables; and (ii) other components added during their fabrication may also influence both methane yield and kinetic parameters. Biotechnol. Bioeng. 2017;114: 951-960. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos/microbiologia , Lignina/análise , Lignina/metabolismo , Papel , Esgotos/microbiologia , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Celulose/análise , Celulose/química , Celulose/metabolismo , Lignina/química , Modelos Lineares , Metano/metabolismo
2.
J Phys Chem A ; 119(13): 3244-52, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25685901

RESUMO

The activities of solutes and solvents in solutions govern numerous physical phenomena in a wide range of practical applications. In prior work, we used statistical mechanics and multilayer adsorption isotherms to develop a transformative model for capturing thermodynamic properties of multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. 2011, 2012, 2013). That model needed only a few adsorption energy values to represent the solution thermodynamics of each solute. In the current work, we posit that the adsorption energies are due to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions. This hypothesis was tested in aqueous solutions on (a) 37 1:1 electrolytes, over a range of cation sizes, from H(+) to tetrabutylammonium, for common anions including Cl(-), Br(-), I(-), NO3(-), OH(-), ClO4(-), and (b) 20 water-soluble organic molecules including alcohols and polyols. For both electrolytes and organic solutions, the energies of adsorption can be calculated with the dipole moments of the solvent, molecular size of the solvent and solute, and the solvent-solvent and solvent-solute intermolecular bond lengths. Many of these physical properties are available in the literature, with the exception of the solute-solvent intermolecular bond lengths. For those, predictive correlations developed here enable estimation of solute and solvent solution activities for which there are little or no activity data.

3.
Sci Total Environ ; 771: 144806, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548721

RESUMO

The presence and release of 1,4-dioxane to groundwater from onsite-wastewater treatment systems (OWTS), which represent 25% of the total wastewater treatment in the U.S., has not been studied to date. In this study we monitored 1,4-dioxane in six septic tank effluents (STE) and receiving OWTS installed at residences on Long Island (LI), NY, for a period of 15 months. We specifically evaluated the performance of Nitrogen Removing Biofilters (NRBs) as an innovative/alternative-OWTS, consisting of a top sand layer and a bottom woodchip/sand layer, to simultaneously remove nitrogen and 1,4-dioxane. 1,4-Dioxane levels in STE (mean: 1.49 µg L-1; range: 0.07-8.45 µg L-1; n = 37) were on average > 15 times higher than tap water from these residences, demonstrating that 1,4-dioxane primarily originated from the use of household products. NRBs were effective in removing both 1,4-dioxane and total nitrogen with an overall removal efficiency of 56 ± 20% and 88 ± 12%, respectively. The majority of 1,4-dioxane removal (~80%) occurred in the top oxic layer of the NRBs. The detection of functional genes (dxmB, prmA, and thmA), which encode for metabolic and co-metabolic 1,4-dioxane degradation, in NRBs provides the first field evidence of aerobic microbial degradation of 1,4-dioxane occurring in a wastewater system. Given that there are ~500,000 conventional OWTS on LI, the 1,4-dioxane discharge to groundwater from residential wastewater was estimated at 195 ± 205 kg yr -1, suggesting high risk of contamination to shallow aquifers. The results also demonstrate that installation of NRBs can reduce 1,4-dioxane to levels even lower than the NY State drinking water standard of 1 µg L-1.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Dioxanos , Nitrogênio , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
4.
Bioresour Technol ; 216: 894-903, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27323241

RESUMO

Austere US military bases typically dispose of solid wastes, including large fractions of food waste (FW) and corrugated cardboard (CCB), by open dumping, landfilling, or burning. Anaerobic digestion (AD) offers an opportunity to reduce pollution and recover useful energy. This study aimed to evaluate the rates and yields of AD for FW-CCB mixtures. Batch AD was analyzed at substrate concentrations of 1-50g total chemical oxygen demand (COD)L(-1) using response surface methodology. At low concentrations, higher proportions of FW were correlated with faster specific methanogenic activities and greater final methane yields; however, concentrations of FW ⩾18.75gCODL(-1) caused inhibition. Digestion of mixtures with ⩾75% CCB occurred slowly but achieved methane yields >70%. Greater shifts in microbial communities were observed at higher substrate concentrations. Statistical models of methane yield and specific methanogenic activity indicated that FW and CCB exhibited no considerable interactions as substrates for AD.


Assuntos
Instalações Militares , Eliminação de Resíduos/métodos , Anaerobiose , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Alimentos , Metano/metabolismo , Consórcios Microbianos/genética , Modelos Estatísticos , Eliminação de Resíduos/instrumentação , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA