Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Zool ; 6: 11, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19538733

RESUMO

BACKGROUND: Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. RESULTS: In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. CONCLUSION: Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the Deuterostomia.

2.
Placenta ; 36(12): 1425-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26494606

RESUMO

INTRODUCTION: The villous tree of human placentas is a complex three-dimensional (3D) structure which enables fetomaternal exchange. Current concepts of microscopic analyses are based on the analysis of two-dimensional (2D) histologic sections. For this approach, the assessment of the stromal core of sectioned villi is of key importance. The classification of stromal properties of sectioned villi allows allocation of villous sections to villous types which are named by their expected position in villous trees (terminal, intermediate, and stem villi). METHOD: The present study takes these current concepts of placental histology as hypothesis and validates them against predetermined 3D positions of branches of villous trees. The 3D positions were determined prior to histologic sectioning using a recently introduced 3D-microscopic approach. Individual histologic sections of villi were classified by their stromal structures and inter rater variability of these histologic assessments were determined. RESULTS/DISSCUSSION: Inter rater variability was high and indicates substantial observer influence on the outcome of histologic assessments. Cross-match of villous types with the predetermined positions of villous branches of villous trees revealed substantial mismatch between the outcome of stromal classification and 3D-position of the sectioned villi in the placental villous trees.


Assuntos
Vilosidades Coriônicas/anatomia & histologia , Placenta/anatomia & histologia , Feminino , Humanos , Imageamento Tridimensional , Gravidez
3.
Evol Dev ; 9(3): 244-56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17501748

RESUMO

In adult echinoderms, the nervous system includes the ectoneural and hyponeural subsystems. The former has been believed to develop from the ectoderm, whereas the latter is considered to be mesodermal in origin. However, this view has not been substantially supported by embryological examinations. Our study deals with the developmental origin of the nervous system in the direct-developing sea cucumber Eupentacta fraudatrix. The rudiment of the adult nervous system develops from ectodermally derived cells, which ingress into the primary body cavity from the floor of the vestibule. At the earliest stages, only the rudiment of the ectoneural nerve ring is laid down. The radial nerve cords and tentacular nerves grow out from this subcutaneous rudiment. The ectoneural cords do not develop simultaneously but make their appearance in the following order: unpaired mid-ventral cord, paired dorsal lateral cords, and ventral lateral cords. These transitional developmental stages probably recapitulate the evolution of the echinoderm body plan. The holothurian hyponeural subsystem, as other regions of the metazoan nervous system, has an ectodermal origin. It originally appears as a narrow band of tissue, which bulges out of the basal region of the ectoneural neuroepithelium. Our data combined with those of other workers strongly suggest that the adult nervous tissue in echinoderms develops separately from the superficial larval system of ciliary nerves. Therefore, our data are neither in strict accordance with Garstang's hypothesis nor do they allow to refuse it. Nevertheless, in addition to ciliary bands, other areas of neurogenetic epidermis must be taken into account.


Assuntos
Sistema Nervoso Central/embriologia , Pepinos-do-Mar/embriologia , Animais , Sistema Nervoso Central/ultraestrutura , Ectoderma/fisiologia , Ectoderma/ultraestrutura , Epiderme/fisiologia , Epiderme/ultraestrutura , Pepinos-do-Mar/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA