Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(33): 14045-14051, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32608977

RESUMO

Ammonium salts are used as phase-transfer catalysts for fluorination with alkali metal fluorides. We now demonstrate that these organic salts, specifically azetidinium triflates, are suitable substrates for enantioselective ring opening with CsF and a chiral bis-urea catalyst. This process, which highlights the ability of hydrogen bonding phase-transfer catalysts to couple two ionic reactants, affords enantioenriched γ-fluoroamines in high yields. Mechanistic studies underline the role of the catalyst for phase-transfer, and computed transition state structures account for the enantioconvergence observed for mixtures of achiral azetidinium diastereomers. The N-substituents in the electrophile influence the reactivity, but the configuration at nitrogen is unimportant for the enantioselectivity.

2.
J Am Chem Soc ; 141(7): 2878-2883, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30689372

RESUMO

Potassium fluoride (KF) is an ideal reagent for fluorination because it is safe, easy to handle and low-cost. However, poor solubility in organic solvents coupled with limited strategies to control its reactivity has discouraged its use for asymmetric C-F bond formation. Here, we demonstrate that hydrogen bonding phase-transfer catalysis with KF provides access to valuable ß-fluoroamines in high yields and enantioselectivities. This methodology employs a chiral N-ethyl bis-urea catalyst that brings solid KF into solution as a tricoordinated urea-fluoride complex. This operationally simple reaction affords enantioenriched fluoro-diphenidine (up to 50 g scale) using 0.5 mol % of recoverable bis-urea catalyst.

3.
Angew Chem Int Ed Engl ; 58(50): 17930-17952, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30633431

RESUMO

Epigenetics is currently the focus of intense research interest across a broad range of disciplines due to its importance in a multitude of biological processes and disease states. Epigenetic functions result partly from modification of the nucleobases in DNA and RNA, and/or post-translational modifications of histone proteins. These modifications are dynamic, with cellular machinery identified to modulate and interpret the marks. Our focus is on bromodomains, which bind to acetylated lysine residues. Progress in the study of bromodomains, and the development of bromodomain ligands, has been rapid. These advances have been underpinned by many disciplines, but chemistry and chemical biology have undoubtedly played a significant role. Herein, we review the key chemistry and chemical biology approaches that have furthered our study of bromodomains, enabled the development of bromodomain ligands, and played a critical role in the validation of bromodomains as therapeutic targets.


Assuntos
Epigenômica/métodos , Biologia Molecular/métodos , Domínios Proteicos/genética , Acetilação , Aminoácidos/química , Aminoácidos/metabolismo , Sistemas CRISPR-Cas , Epigênese Genética , Histonas/metabolismo , Ligantes , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Sondas Moleculares/química , Testes de Mutagenicidade
4.
J Am Chem Soc ; 140(48): 16740-16748, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30338998

RESUMO

The base-catalyzed rearrangement of arylindenols is a rare example of a suprafacial [1,3]-hydrogen atom transfer. The mechanism has been proposed to proceed via sequential [1,5]-sigmatropic shifts, which occur in a selective sense and avoid an achiral intermediate. A computational analysis using quantum chemistry casts serious doubt on these suggestions: These pathways have enormous activation barriers, and in constrast to what is observed experimentally, they overwhelmingly favor a racemic product. Instead we propose that a suprafacial [1,3]-prototopic shift occurs in a two-step deprotonation/reprotonation sequence. This mechanism is favored by 15 kcal mol-1 over that previously proposed. Most importantly, this is also consistent with stereospecificity since reprotonation occurs rapidly on the same π-face. We have used explicitly solvated molecular dynamics studies to study the persistence and condensed-phase dynamics of the intermediate ion-pair formed in this reaction. Chirality transfer is the result of a particularly resilient contact ion-pair, held together by electrostatic attraction and a critical NH···π interaction which ensures that this species has an appreciable lifetime even in polar solvents such as DMSO and MeOH.

5.
Science ; 360(6389): 638-642, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29748281

RESUMO

Common anionic nucleophiles such as those derived from inorganic salts have not been used for enantioselective catalysis because of their insolubility. Here, we report that merging hydrogen bonding and phase-transfer catalysis provides an effective mode of activation for nucleophiles that are insoluble in organic solvents. This catalytic manifold relies on hydrogen bonding complexation to render nucleophiles soluble and reactive, while simultaneously inducing asymmetry in the ensuing transformation. We demonstrate the concept using a chiral bis-urea catalyst to form a tridentate hydrogen bonding complex with fluoride from its cesium salt, thereby enabling highly efficient enantioselective ring opening of episulfonium ion. This fluorination method is synthetically valuable considering the scarcity of alternative protocols and points the way to wider application of the catalytic approach with diverse anionic nucleophiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA