Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Adv Exp Med Biol ; 1447: 59-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38724784

RESUMO

This chapter will describe infectious complications of atopic dermatitis, including bacterial, viral, and fungal infections and the evolving understanding of the relationship between atopic dermatitis and infectious disease. The underlying immunological dysregulation and poor skin barrier function associated with atopic dermatitis not only increase the likelihood of infectious complications but also lend atopic dermatitis skin vulnerable to flares induced by environmental triggers. Thus, this chapter will also highlight the impact of common external environmental agents on precipitating flares of disease. Lastly, this chapter will discuss complications that can arise from treatments and the association of atopic dermatitis with more serious conditions such as lymphoma.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/imunologia , Dermatite Atópica/etiologia
2.
Proc Natl Acad Sci U S A ; 114(26): E5094-E5102, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607050

RESUMO

Infection is a major complication of implantable medical devices, which provide a scaffold for biofilm formation, thereby reducing susceptibility to antibiotics and complicating treatment. Hematogenous implant-related infections following bacteremia are particularly problematic because they can occur at any time in a previously stable implant. Herein, we developed a model of hematogenous infection in which an orthopedic titanium implant was surgically placed in the legs of mice followed 3 wk later by an i.v. exposure to Staphylococcus aureus This procedure resulted in a marked propensity for a hematogenous implant-related infection comprised of septic arthritis, osteomyelitis, and biofilm formation on the implants in the surgical legs compared with sham-operated surgical legs without implant placement and with contralateral nonoperated normal legs. Neutralizing human monoclonal antibodies against α-toxin (AT) and clumping factor A (ClfA), especially in combination, inhibited biofilm formation in vitro and the hematogenous implant-related infection in vivo. Our findings suggest that AT and ClfA are pathogenic factors that could be therapeutically targeted against Saureus hematogenous implant-related infections.


Assuntos
Anticorpos Antibacterianos/farmacologia , Anticorpos Neutralizantes/farmacologia , Artrite Infecciosa , Biofilmes/efeitos dos fármacos , Implantes Experimentais/microbiologia , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus/fisiologia , Animais , Artrite Infecciosa/tratamento farmacológico , Artrite Infecciosa/etiologia , Artrite Infecciosa/microbiologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Osteomielite/tratamento farmacológico , Osteomielite/etiologia , Osteomielite/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/microbiologia , Titânio
3.
J Allergy Clin Immunol ; 143(4): 1426-1443.e6, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30240702

RESUMO

BACKGROUND: Atopic dermatitis (AD) is associated with epidermal barrier defects, dysbiosis, and skin injury caused by scratching. In particular, the barrier-defective epidermis in patients with AD with loss-of-function filaggrin mutations has increased IL-1α and IL-1ß levels, but the mechanisms by which IL-1α, IL-1ß, or both are induced and whether they contribute to the aberrant skin inflammation in patients with AD is unknown. OBJECTIVE: We sought to determine the mechanisms through which skin injury, dysbiosis, and increased epidermal IL-1α and IL-1ß levels contribute to development of skin inflammation in a mouse model of injury-induced skin inflammation in filaggrin-deficient mice without the matted mutation (ft/ft mice). METHODS: Skin injury of wild-type, ft/ft, and myeloid differentiation primary response gene-88-deficient ft/ft mice was performed, and ensuing skin inflammation was evaluated by using digital photography, histologic analysis, and flow cytometry. IL-1α and IL-1ß protein expression was measured by means of ELISA and visualized by using immunofluorescence and immunoelectron microscopy. Composition of the skin microbiome was determined by using 16S rDNA sequencing. RESULTS: Skin injury of ft/ft mice induced chronic skin inflammation involving dysbiosis-driven intracellular IL-1α release from keratinocytes. IL-1α was necessary and sufficient for skin inflammation in vivo and secreted from keratinocytes by various stimuli in vitro. Topical antibiotics or cohousing of ft/ft mice with unaffected wild-type mice to alter or intermix skin microbiota, respectively, resolved the skin inflammation and restored keratinocyte intracellular IL-1α localization. CONCLUSIONS: Taken together, skin injury, dysbiosis, and filaggrin deficiency triggered keratinocyte intracellular IL-1α release that was sufficient to drive chronic skin inflammation, which has implications for AD pathogenesis and potential therapeutic targets.


Assuntos
Dermatite Atópica/metabolismo , Inflamação/metabolismo , Interleucina-1alfa/metabolismo , Proteínas de Filamentos Intermediários/deficiência , Queratinócitos/metabolismo , Animais , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Disbiose/imunologia , Disbiose/metabolismo , Proteínas Filagrinas , Inflamação/imunologia , Inflamação/microbiologia , Interleucina-1alfa/imunologia , Queratinócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
4.
Proc Natl Acad Sci U S A ; 113(45): E6919-E6928, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791154

RESUMO

Bacterial biofilm formation is a major complication of implantable medical devices that results in therapeutically challenging chronic infections, especially in cases involving antibiotic-resistant bacteria. As an approach to prevent these infections, an electrospun composite coating comprised of poly(lactic-coglycolic acid) (PLGA) nanofibers embedded in a poly(ε-caprolactone) (PCL) film was developed to locally codeliver combinatorial antibiotics from the implant surface. The release of each antibiotic could be adjusted by loading each drug into the different polymers or by varying PLGA:PCL polymer ratios. In a mouse model of biofilm-associated orthopedic-implant infection, three different combinations of antibiotic-loaded coatings were highly effective in preventing infection of the bone/joint tissue and implant biofilm formation and were biocompatible with enhanced osseointegration. This nanofiber composite-coating technology could be used to tailor the delivery of combinatorial antimicrobial agents from various metallic implantable devices or prostheses to effectively decrease biofilm-associated infections in patients.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29311091

RESUMO

Staphylococcus aureus wound infections delay healing and result in invasive complications such as osteomyelitis, especially in the setting of diabetic foot ulcers. In preclinical animal models of S. aureus skin infection, antibody neutralization of alpha-toxin (AT), an S. aureus-secreted pore-forming cytolytic toxin, reduces disease severity by inhibiting skin necrosis and restoring effective host immune responses. However, whether therapeutic neutralization of alpha-toxin is effective against S. aureus-infected wounds is unclear. Herein, the efficacy of prophylactic treatment with a human neutralizing anti-AT monoclonal antibody (MAb) was evaluated in an S. aureus skin wound infection model in nondiabetic and diabetic mice. In both nondiabetic and diabetic mice, anti-AT MAb treatment decreased wound size and bacterial burden and enhanced reepithelialization and wound resolution compared to control MAb treatment. Anti-AT MAb had distinctive effects on the host immune response, including decreased neutrophil and increased monocyte and macrophage infiltrates in nondiabetic mice and decreased neutrophil extracellular traps (NETs) in diabetic mice. Similar therapeutic efficacy was achieved with an active vaccine targeting AT. Taken together, neutralization of AT had a therapeutic effect against S. aureus-infected wounds in both nondiabetic and diabetic mice that was associated with differential effects on the host immune response.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Diabetes Mellitus Experimental/imunologia , Proteínas Hemolisinas/antagonistas & inibidores , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Ferimentos não Penetrantes/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Toxinas Bacterianas/imunologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/microbiologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/microbiologia , Proteínas Hemolisinas/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/complicações , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/farmacologia , Cicatrização/imunologia , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/imunologia , Ferimentos não Penetrantes/microbiologia
7.
Adv Exp Med Biol ; 1027: 47-55, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29063430

RESUMO

This chapter will describe infectious complications of atopic dermatitis, including bacterial, viral, and fungal infections and the evolving understanding of the relationship between atopic dermatitis and infectious disease. The underlying immunological dysregulation and poor skin barrier function associated with atopic dermatitis not only increases the likelihood of infectious complications, but also lends atopic dermatitis skin vulnerable to flares induced by environmental triggers. Thus, this chapter will also highlight the impact of common external environmental agents on precipitating flares of disease. Lastly, this chapter will discuss complications that can arise from treatments and the association of atopic dermatitis with more serious conditions such as lymphoma.


Assuntos
Dermatite Atópica/complicações , Dermatopatias Infecciosas/etiologia , Dermatite Atópica/imunologia , Dermatomicoses/etiologia , Humanos , Dermatopatias Bacterianas/etiologia , Dermatopatias Virais/etiologia
9.
Dermatitis ; 33(1): 51-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35029349

RESUMO

OBJECTIVE: We sought to determine the incidence of RFDD in patients receiving dupilumab and the rate of resolution of RFDD after expanded series patch testing (ESPT) and allergen avoidance. METHODS: This is a retrospective chart review of 80 patients with atopic dermatitis who were evaluated for RFDD after treatment with dupilumab. Expanded series patch testing findings and response to allergen avoidance were assessed in the subset of patients with RFDD who subsequently underwent ESPT while continuing to receive dupilumab. RESULTS: Forty-nine patients (61.3%) experienced facial dermatitis before initiating dupilumab. Thirty-five patients (43.8%) experienced RFDD after starting dupilumab. Of the 14 patients with RFDD who received ESPT, 92.9% had 1 or more relevant positive patch test results, with 50% of such patients being mostly to completely clear of facial dermatitis after allergen avoidance. Importantly, 50.6% of the positive reactions to allergens were not included on the North American Contact Dermatitis Group Core 80. CONCLUSIONS: Many patients with RFDD benefit from patch testing and subsequent allergen avoidance. Expanded series patch testing should be offered to patients who experience RFDD after beginning dupilumab therapy to ensure that such patients have eliminated any exogenous component of their dermatitis, such as concomitant allergic contact dermatitis.


Assuntos
Alérgenos/efeitos adversos , Anticorpos Monoclonais Humanizados/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Dermatoses Faciais/diagnóstico , Testes do Emplastro/métodos , Pele/efeitos dos fármacos , Adulto , Alérgenos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Dermatite Alérgica de Contato/etiologia , Dermatoses Faciais/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
10.
J Orthop Surg Res ; 16(1): 556, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521424

RESUMO

BACKGROUND: The pathogenesis of hematogenous orthopaedic implant-associated infections (HOIAI) remains largely unknown, with little understanding of the influence of the physis on bacterial seeding. Since the growth velocity in the physis of long bones decreases during aging, we sought to evaluate the role of the physis on influencing the development of Staphylococcus aureus HOIAI in a mouse model comparing younger versus older mice. METHODS: In a mouse model of HOIAI, a sterile Kirschner wire was inserted retrograde into the distal femur of younger (5-8-week-old) and older (14-21-week-old) mice. After a 3-week convalescent period, a bioluminescent Staphylococcus aureus strain was inoculated intravenously. Bacterial dissemination to operative and non-operative legs was monitored longitudinally in vivo for 4 weeks, followed by ex vivo bacterial enumeration and X-ray analysis. RESULTS: In vivo bioluminescence imaging and ex vivo CFU enumeration of the bone/joint tissue demonstrated that older mice had a strong predilection for developing a hematogenous infection in the operative legs but not the non-operative legs. In contrast, this predilection was less apparent in younger mice as the infection occurred at a similar rate in both the operative and non-operative legs. X-ray imaging revealed that the operative legs of younger mice had decreased femoral length, likely due to the surgical and/or infectious insult to the more active physis, which was not observed in older mice. Both age groups demonstrated substantial reactive bone changes in the operative leg due to infection. CONCLUSIONS: The presence of an implant was an important determinant for developing a hematogenous orthopaedic infection in older but not younger mice, whereas younger mice had a similar predilection for developing periarticular infection whether or not an implant was present. On a clinical scale, diagnosing HOIAI may be difficult particularly in at-risk patients with limited examination or other data points. Understanding the influence of age on developing HOIAI may guide clinical surveillance and decision-making in at-risk patients.


Assuntos
Ortopedia , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Animais , Modelos Animais de Doenças , Camundongos , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/diagnóstico por imagem , Infecções Relacionadas à Prótese/epidemiologia , Infecções Relacionadas à Prótese/etiologia , Infecções Estafilocócicas/diagnóstico por imagem , Staphylococcus aureus
11.
J Orthop Res ; 38(8): 1800-1809, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31975434

RESUMO

Orthopedic implant-associated infection (OIAI) is a major complication that leads to implant failure. In preclinical models of Staphylococcus aureus OIAI, osteomyelitis and septic arthritis, interleukin-1α (IL-1α), IL-1ß, and tumor necrosis factor (TNF) are induced, but whether they have interactive or distinctive roles in host defense are unclear. Herein, a S. aureus OIAI model was performed in mice deficient in IL-1α, IL-1ß, or TNF. Mice deficient in IL-1ß or TNF (to a lesser extent) but not IL-1α had increased bacterial burden at the site of the OIAI throughout the 28-day experiment. IL-1ß and TNF had a combined and critical role in host defense as mice deficient in both IL-1R and TNF (IL-1R/TNF-deficient mice) had a 40% mortality rate, which was associated with markedly increased bacterial burden at the site of the OIAI infection. Finally, IL-1α- and IL-1ß-deficient mice had impaired neutrophil recruitment whereas IL-1ß-, TNF-, and IL-1R/TNF-deficient mice all had impaired recruitment of both neutrophils and monocytes. Therefore, IL-1ß and TNF contributed to host defense against S. aureus OIAI and neutrophil recruitment was primarily mediated by IL-1ß and monocyte recruitment was mediated by both IL-1ß and TNF.


Assuntos
Interleucina-1beta/metabolismo , Infiltração de Neutrófilos , Infecções Relacionadas à Prótese/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Interleucina-1alfa/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infecções Relacionadas à Prótese/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo
12.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185667

RESUMO

Bacterial biofilm infections of implantable medical devices decrease the effectiveness of antibiotics, creating difficult-to-treat chronic infections. Prosthetic joint infections (PJI) are particularly problematic because they require prolonged antibiotic courses and reoperations to remove and replace the infected prostheses. Current models to study PJI focus on Gram-positive bacteria, but Gram-negative PJI (GN-PJI) are increasingly common and are often more difficult to treat, with worse clinical outcomes. Herein, we sought to develop a mouse model of GN-PJI to investigate the pathogenesis of these infections and identify potential therapeutic targets. An orthopedic-grade titanium implant was surgically placed in the femurs of mice, followed by infection of the knee joint with Pseudomonas aeruginosa or Escherichia coli. We found that in vitro biofilm-producing activity was associated with the development of an in vivo orthopedic implant infection characterized by bacterial infection of the bone/joint tissue, biofilm formation on the implants, reactive bone changes, and inflammatory immune cell infiltrates. In addition, a bispecific antibody targeting P. aeruginosa virulence factors (PcrV and Psl exopolysaccharide) reduced the bacterial burden in vivo. Taken together, our findings provide a preclinical model of GN-PJI and suggest the therapeutic potential of targeting biofilm-associated antigens.


Assuntos
Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/terapia , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/terapia , Animais , Antibacterianos/uso terapêutico , Antígenos de Bactérias , Toxinas Bacterianas , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Escherichia coli , Fêmur , Infecções por Bactérias Gram-Negativas/patologia , Inflamação , Articulação do Joelho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ortopedia , Proteínas Citotóxicas Formadoras de Poros , Infecções Relacionadas à Prótese/patologia , Pseudomonas aeruginosa , Titânio , Fatores de Virulência
13.
Virulence ; 9(1): 262-272, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29166841

RESUMO

Staphylococcus aureus infections are a major threat in healthcare, requiring adequate early-stage diagnosis and treatment. This calls for novel diagnostic tools that allow noninvasive in vivo detection of staphylococci. Here we performed a preclinical study to investigate a novel fully-human monoclonal antibody 1D9 that specifically targets the immunodominant staphylococcal antigen A (IsaA). We show that 1D9 binds invariantly to S. aureus cells and may further target other staphylococcal species. Importantly, using a human post-mortem implant model and an in vivo murine skin infection model, preclinical feasibility was demonstrated for 1D9 labeled with the near-infrared fluorophore IRDye800CW to be applied for direct optical imaging of in vivo S. aureus infections. Additionally, 89Zirconium-labeled 1D9 could be used for positron emission tomography imaging of an in vivo S. aureus thigh infection model. Our findings pave the way towards clinical implementation of targeted imaging of staphylococcal infections using the human monoclonal antibody 1D9.


Assuntos
Anticorpos Monoclonais/metabolismo , Imagem Óptica/métodos , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Cutâneas Estafilocócicas/diagnóstico por imagem , Staphylococcus aureus/isolamento & purificação , Animais , Anticorpos Monoclonais/química , Antígenos de Bactérias/metabolismo , Cadáver , Modelos Animais de Doenças , Corantes Fluorescentes/química , Humanos , Camundongos , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia
14.
J Clin Invest ; 128(3): 1026-1042, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400698

RESUMO

The mechanisms that mediate durable protection against Staphylococcus aureus skin reinfections are unclear, as recurrences are common despite high antibody titers and memory T cells. Here, we developed a mouse model of S. aureus skin reinfection to investigate protective memory responses. In contrast with WT mice, IL-1ß-deficient mice exhibited poor neutrophil recruitment and bacterial clearance during primary infection that was rescued during secondary S. aureus challenge. The γδ T cells from skin-draining LNs utilized compensatory T cell-intrinsic TLR2/MyD88 signaling to mediate rescue by trafficking and producing TNF and IFN-γ, which restored neutrophil recruitment and promoted bacterial clearance. RNA-sequencing (RNA-seq) of the LNs revealed a clonotypic S. aureus-induced γδ T cell expansion with a complementarity-determining region 3 (CDR3) aa sequence identical to that of invariant Vγ5+ dendritic epidermal T cells. However, this T cell receptor γ (TRG) aa sequence of the dominant CDR3 sequence was generated from multiple gene rearrangements of TRGV5 and TRGV6, indicating clonotypic expansion. TNF- and IFN-γ-producing γδ T cells were also expanded in peripheral blood of IRAK4-deficient humans no longer predisposed to S. aureus skin infections. Thus, clonally expanded γδ T cells represent a mechanism for long-lasting immunity against recurrent S. aureus skin infections.


Assuntos
Linfócitos Intraepiteliais/imunologia , Dermatopatias Bacterianas/imunologia , Infecções Estafilocócicas/imunologia , Animais , Feminino , Rearranjo Gênico , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-1beta/imunologia , Interleucinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/citologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Staphylococcus aureus , Fator de Necrose Tumoral alfa/imunologia , Interleucina 22
15.
J Bone Joint Surg Am ; 99(8): 656-665, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28419033

RESUMO

BACKGROUND: The medical treatment of periprosthetic joint infection (PJI) involves prolonged systemic antibiotic courses, often with suboptimal clinical outcomes including increased morbidity and health-care costs. Oral and intravenous monotherapies and combination antibiotic regimens were evaluated in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) PJI. METHODS: Oral linezolid with or without oral rifampin, intravenous vancomycin with oral rifampin, intravenous daptomycin or ceftaroline with or without oral rifampin, oral doxycycline, or sham treatment were administered at human-exposure doses for 6 weeks in a mouse model of PJI. Bacterial burden was assessed by in vivo bioluminescent imaging and ex vivo counting of colony-forming units (CFUs), and reactive bone changes were evaluated with radiographs and micro-computed tomography (µCT) imaging. RESULTS: Oral-only linezolid-rifampin and all intravenous antibiotic-rifampin combinations resulted in no recoverable bacteria and minimized reactive bone changes. Although oral linezolid was the most effective monotherapy, all oral and intravenous antibiotic monotherapies failed to clear infection or prevent reactive bone changes. CONCLUSIONS: Combination antibiotic-rifampin regimens, including oral-only linezolid-rifampin and the newer ceftaroline-rifampin combinations, were highly effective and more efficacious than monotherapies when used against a preclinical MRSA PJI. CLINICAL RELEVANCE: This study provides important preclinical evidence to better optimize future antibiotic therapy against PJIs. In particular, the oral-only linezolid-rifampin option might reduce venous access complications and health-care costs.


Assuntos
Antibacterianos/uso terapêutico , Linezolida/uso terapêutico , Infecções Relacionadas à Prótese/tratamento farmacológico , Rifampina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Administração Oral , Animais , Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Cefalosporinas/uso terapêutico , Daptomicina/administração & dosagem , Daptomicina/uso terapêutico , Modelos Animais de Doenças , Doxiciclina/administração & dosagem , Doxiciclina/uso terapêutico , Combinação de Medicamentos , Linezolida/administração & dosagem , Staphylococcus aureus Resistente à Meticilina , Camundongos , Rifampina/administração & dosagem , Resultado do Tratamento , Ceftarolina
16.
Cell Host Microbe ; 22(5): 653-666.e5, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120743

RESUMO

Staphylococcus aureus colonization contributes to skin inflammation in diseases such as atopic dermatitis, but the signaling pathways involved are unclear. Herein, epicutaneous S. aureus exposure to mouse skin promoted MyD88-dependent skin inflammation initiated by IL-36, but not IL-1α/ß, IL-18, or IL-33. By contrast, an intradermal S. aureus challenge promoted MyD88-dependent host defense initiated by IL-1ß rather than IL-36, suggesting that different IL-1 cytokines trigger MyD88 signaling depending on the anatomical depth of S. aureus cutaneous exposure. The bacterial virulence factor PSMα, but not α-toxin or δ-toxin, contributed to the skin inflammation, which was driven by IL-17-producing γδ and CD4+ T cells via direct IL-36R signaling in the T cells. Finally, adoptive transfer of IL-36R-expressing T cells to IL-36R-deficient mice was sufficient for mediating S. aureus-induced skin inflammation. Together, this study defines a previously unknown pathway by which S. aureus epicutaneous exposure promotes skin inflammation involving IL-36R/MyD88-dependent IL-17 T cell responses.


Assuntos
Dermatite Atópica/imunologia , Inflamação/imunologia , Interleucina-1/imunologia , Pele/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/patogenicidade , Linfócitos T/imunologia , Animais , Toxinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Proteínas Hemolisinas/imunologia , Interações Hospedeiro-Parasita/imunologia , Inflamação/patologia , Interleucina-17 , Interleucina-18/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo , Pele/microbiologia , Pele/patologia , Infecções Estafilocócicas/patologia , Linfócitos T/microbiologia , Fatores de Virulência/imunologia
17.
J Am Acad Orthop Surg ; 25 Suppl 1: S7-S12, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27941556

RESUMO

INTRODUCTION: Diagnosing prosthetic joint infection (PJI) poses significant challenges, and current modalities are fraught with low sensitivity and/or potential morbidity. Photoacoustic imaging (PAI) is a novel ultrasound-based modality with potential for diagnosing PJI safely and noninvasively. MATERIALS: In an established preclinical mouse model of bioluminescent Staphylococcus aureus PJI, fluorescent indocyanine green (ICG) was conjugated to ß-cyclodextrin (CDX-ICG) or teicoplanin (Teic-ICG) and injected intravenously for 1 week postoperatively. Daily fluorescent imaging and PAI were used to localize and quantify tracer signals. Results were analyzed using 2-way analysis of variance. RESULTS: Fluorescence clearly localized to the site of infection and was significantly higher with Teic-ICG compared with CDX-ICG (P = 0.046) and ICG alone (P = 0.0087). With PAI, the photoacoustic signal per volumetric analysis was substantially higher and better visualized with Teic-ICG compared with CDX-ICG and ICG alone, and colocalized well with bioluminescence and fluorescence imaging. CONCLUSION: Photoacoustic imaging successfully localized PJI in this proof-of-concept study and demonstrates potential for clinical translation in orthopaedics.


Assuntos
Artroplastia de Substituição/efeitos adversos , Técnicas Fotoacústicas/métodos , Infecções Relacionadas à Prótese/diagnóstico por imagem , Animais , Medições Luminescentes/métodos , Masculino , Camundongos Endogâmicos C57BL , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA