Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 36(7): 1966-1971, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510889

RESUMO

ABSTRACT: Stone, BL, Ashley, JD, Skinner, RM, Polanco, JP, Walters, MT, Schilling, BK, and Kellawan, JM. Effects of a short-term heat acclimation protocol in elite amateur boxers. J Strength Cond Res 36(7): 1966-1971, 2022-Boxing requires proficient technical and tactical skills coupled with high levels of physiological capacity. Although heat and humidity negatively affect acute exercise performance, short-term exercise training in hot and humid environments can lead to physiological adaptations that enhance exercise performance in both hot and thermoneutral conditions. In highly trained endurance athletes, exercise-induced acclimation can occur in as little as 5 days (known as short-term heat acclimation [STHA]). However, the impact of a 5-day heat acclimation (5-DayHA) in combat athletes, such as elite amateur boxers, is unknown. The aim of the present investigation was to determine whether a 5-DayHA improves aerobic performance in a thermoneutral environment and causes positive physiological adaptations in elite boxers. Seven elite amateur boxers underwent a 5-DayHA protocol, consisting of 60-minute exercise sessions in an environmental chamber at 32 °C and 70% relative humidity. Repeat sprint test (RST) evaluated aerobic performance in a thermoneutral environment 24 hours before and after the 5-DayHA. Presession and postsession hydration status (urine specific gravity) and body mass were assessed. After a 5-DayHA period, boxers significantly improved RST performance (13 ± 7 to 19 ± 7 sprints, d = 0.92, p = 0.03) but not pre-exercise hydration status (1.02 ± 0.01 to 1.01 ± 0.01, d = 0.82, p = 0.07). Therefore, these findings suggest 5-DayHA enhances aerobic performance in elite-level amateur boxers and may provide a viable training option for elite combat athletes.


Assuntos
Boxe , Temperatura Alta , Aclimatação/fisiologia , Atletas , Boxe/fisiologia , Exercício Físico/fisiologia , Humanos
2.
J Appl Physiol (1985) ; 129(4): 846-854, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853115

RESUMO

Military performance depends on high-level cognition, specifically executive function (EF), while simultaneously performing strenuous exercise. However, most studies examine cognitive performance following, not during, exercise. Therefore, our aim was to examine the relationship between EF and exercise intensity. Following familiarization, 13 Reserve Officers' Training Corp cadets (age = 19.6 ± 2 yr, five women) completed a graded exercise test (GxT) and two executive function exercise tests (EFETs) separated by a duration of ≥24 h. The EFET was a combined iPad-based EF test (Cedar Operator Workload Assessment Tool) and GxT. Heart rate (HR) and prefrontal cortex (PFC) oxygenation [near-infrared spectroscopy (NIRS)] were continuously recorded. The EF score was analyzed for accuracy of responses (%hit rate). Heart rate reserve was calculated to normalize exercise intensity (%HRR). For PFC oxygenation recordings, NIRS variables were used to calculate the tissue saturation index (%TSI). Data from EFET trials were averaged into a singular response. The %hit rate declined at heart rate reserves (HRRs) of ≥80%, reaching nadir at 100% HRR (74.09 ± 10.63%, P < 0.01). The tissue saturation index (TSI) followed a similar pattern, declining at ≥70% of HRR and at a greater rate during EFET compared with during GxT (P < 0.01), reaching a nadir in both conditions at 100% HRR (60.39 ± 2.94 vs. 63.13 ± 3.16%, P < 0.01). Therefore, EF decline is dependent on exercise intensity, as is %TSI. These data suggest that reductions in EF during high-intensity exercise are at least in part related to attenuated PFC oxygenation. Thus, interventions that improve PFC oxygenation may improve combined exercise and EF performance.NEW & NOTEWORTHY The executive functioning aspect of cognition was evaluated during graded exercise in Reserve Officers' Training Corps cadets. Executive function declined at exercise intensities of ≥80% of heart rate reserve. The decline in executive function was coupled with declines in the oxygenation of the prefrontal cortex, the brain region responsible for executive functioning. These data define the executive function-exercise intensity relationship and provide evidence supporting the reticular activation hypofrontality theory as a model of cognitive change.


Assuntos
Função Executiva , Exercício Físico , Adolescente , Adulto , Cognição , Teste de Esforço , Feminino , Humanos , Córtex Pré-Frontal , Adulto Jovem
3.
Physiol Rep ; 8(20): e14622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112497

RESUMO

Although systemic sex-specific differences in cardiovascular responses to exercise are well established, the comparison of sex-specific cerebrovascular responses to exercise has gone under-investigated especially, during high intensity exercise. Therefore, our purpose was to compare cerebrovascular responses in males and females throughout a graded exercise test (GXT). Twenty-six participants (13 Females and 13 Males, 24 ± 4 yrs.) completed a GXT on a recumbent cycle ergometer consisting of 3-min stages. Each sex completed 50W, 75W, 100W stages. Thereafter, power output increased 30W/stage for females and 40W/stage for males until participants were unable to maintain 60-80 RPM. The final stage completed by the participant was considered maximum workload(Wmax ). Respiratory gases (End-tidal CO2 , EtCO2 ), middle cerebral artery blood velocity (MCAv), heart rate (HR), non-invasive mean arterial pressure (MAP), cardiac output (CO), and stroke volume (SV) were continuously recorded on a breath-by-breath or beat-by-beat basis. Cerebral perfusion pressure, CPP = MAP (0. 7,355 distance from heart-level to doppler probe) and cerebral vascular conductance index, CVCi = MCAv/CPP 100mmHg were calculated. The change from baseline (Δ) in MCAv was similar between the sexes during the GXT (p = .091, ωp2  = 0.05). However, ΔCPP (p < .001, ωp2  = 0.25) was greater in males at intensities ≥ 80% Wmax and ΔCVCi (p = .005, ωp2  = 0.15) was greater in females at 100% Wmax . Δ End-tidal CO2 (ΔEtCO2 ) was not different between the sexes during exercise (p = .606, ωp2  = -0.03). These data suggest there are sex-specific differences in cerebrovascular control, and these differences may only be identifiable at high and severe intensity exercise.


Assuntos
Circulação Cerebrovascular , Teste de Esforço/normas , Treinamento Intervalado de Alta Intensidade/métodos , Adulto , Pressão Sanguínea , Feminino , Frequência Cardíaca , Treinamento Intervalado de Alta Intensidade/normas , Humanos , Masculino , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA