Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 117, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36849912

RESUMO

Botrytis blight is an important disease of wild blueberry [(Vaccinium angustifolium (Va) and V. myrtilloides (Vm))] with variable symptoms in the field due to differences in susceptibility among blueberry phenotypes. Representative blueberry plants of varying phenotypes were inoculated with spores of B. cinerea. The relative expression of pathogenesis-related genes (PR3, PR4), flavonoid biosynthesis genes, and estimation of the concentration of ten phenolic compounds between uninoculated and inoculated samples at different time points were analyzed. Representative plants of six phenotypes (brown stem Va, green stem Va, Va f. nigrum, tall, medium, and short stems of Vm) were collected and studied using qRT-PCR. The expression of targeted genes indicated a response of inoculated plants to B. cinerea at either 12, 24, 48 or 96 h post inoculation (hpi). The maximum expression of PR3 occurred at 24 hpi in all the phenotypes except Va f. nigrum and tall stem Vm. Maximum expression of both PR genes occurred at 12 hpi in Va f. nigrum. Chalcone synthase, flavonol synthase and anthocyanin synthase were suppressed at 12 hpi followed by an upregulation at 24 hpi. The expression of flavonoid pathway genes was phenotype-specific with their regulation patterns showing temporal differences among the phenotypes. Phenolic compound accumulation was temporally regulated at different post-inoculation time points. M-coumaric acid and kaempferol-3-glucoside are the compounds that were increased with B. cinerea inoculation. Results from this study suggest that the expression of PR and flavonoid genes, and the accumulation of phenolic compounds associated with B. cinerea infection could be phenotype specific. This study may provide a starting point for understanding and determining the mechanisms governing the wild blueberry-B. cinerea pathosystem.


Assuntos
Mirtilos Azuis (Planta) , Botrytis , Mirtilos Azuis (Planta)/genética , Antocianinas , Flavonoides , Fenóis
2.
Int J Biol Macromol ; 273(Pt 1): 132954, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852726

RESUMO

This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.


Assuntos
Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450 , Giberelinas , Lipossomos , Mercúrio , Oryza , Sistema Enzimático do Citocromo P-450/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia
3.
Front Plant Sci ; 13: 1085998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714730

RESUMO

Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA