Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Genet ; 13: 913163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873465

RESUMO

Microsatellite sequences are particularly prone to slippage during DNA replication, forming insertion-deletion loops that, if left unrepaired, result in de novo mutations (expansions or contractions of the repeat array). Mismatch repair (MMR) is a critical DNA repair mechanism that corrects these insertion-deletion loops, thereby maintaining microsatellite stability. MMR deficiency gives rise to the molecular phenotype known as microsatellite instability (MSI). By sequencing MMR-proficient and -deficient (Mlh1 +/+ and Mlh1 -/- ) single-cell exomes from mouse T cells, we reveal here several previously unrecognized features of in vivo MSI. Specifically, mutational dynamics of insertions and deletions were different on multiple levels. Factors that associated with propensity of mononucleotide microsatellites to insertions versus deletions were: microsatellite length, nucleotide composition of the mononucleotide tract, gene length and transcriptional status, as well replication timing. Here, we show on a single-cell level that deletions - the predominant MSI type in MMR-deficient cells - are preferentially associated with longer A/T tracts, long or transcribed genes and later-replicating genes.

2.
DNA Repair (Amst) ; 106: 103178, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34311271

RESUMO

Tumors of Lynch syndrome (LS) patients display high levels of microsatellite instability (MSI), which results from complete loss of DNA mismatch repair (MMR), in line with Knudson's two-hit hypothesis. Why some organs, in particular those of the gastrointestinal (GI) tract, are prone to tumorigenesis in LS remains unknown. We hypothesized that MMR is haploinsufficient in certain tissues, compromising microsatellite stability in a tissue-specific manner before tumorigenesis. Using mouse genetics, we tested how levels of MLH1, a central MMR protein, affect age- and tissue-specific microsatellite stability in vivo and whether elevated MSI is detectable prior to loss of MMR function and to neoplastic growth. To assess putative tissue-specific MMR haploinsufficiency, we determined relevant molecular phenotypes (MSI, Mlh1 promoter methylation status, MLH1 protein and RNA levels) in jejuna of Mlh1+/- mice and compared them to those in spleen, as well as to MMR-proficient and -deficient controls (Mlh1+/+ and Mlh1-/- mice). While spleen MLH1 levels of Mlh1+/- mice were, as expected, approximately 50 % compared to wildtype mice, MLH1 levels in jejunum varied substantially between individual Mlh1+/- mice and moreover, decreased with age. Mlh1+/- mice with soma-wide Mlh1 promoter methylation often displayed severe MLH1 depletion in jejunum. Reduced (but still detectable) MLH1 levels correlated with elevated MSI in Mlh1+/- jejunum. MSI in jejunum increased with age, while in spleens of the same mice, MLH1 levels and microsatellites remained stable. Thus, MLH1 expression levels are particularly labile in intestine of Mlh1+/- mice, giving rise to tissue-specific MSI long before neoplasia. A similar mechanism likely also operates also in the human GI epithelium and could explain the wide range in age-of-onset of LS-associated tumorigenesis.


Assuntos
Reparo de Erro de Pareamento de DNA , Regulação da Expressão Gênica , Haploinsuficiência , Mucosa Intestinal/metabolismo , Instabilidade de Microssatélites , Proteína 1 Homóloga a MutL/genética , Animais , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Modelos Animais de Doenças , Feminino , Jejuno/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Regiões Promotoras Genéticas , Baço/metabolismo
3.
iScience ; 23(9): 101452, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32858340

RESUMO

DNA mismatch repair (MMR) corrects replication errors and is recruited by the histone mark H3K36me3, enriched in exons of transcriptionally active genes. To dissect in vivo the mutational landscape shaped by these processes, we employed single-cell exome sequencing on T cells of wild-type and MMR-deficient (Mlh1-/-) mice. Within active genes, we uncovered a spatial bias in MMR efficiency: 3' exons, often H3K36me3-enriched, acquire significantly fewer MMR-dependent mutations compared with 5' exons. Huwe1 and Mcm7 genes, both active during lymphocyte development, stood out as mutational hotspots in MMR-deficient cells, demonstrating their intrinsic vulnerability to replication error in this cell type. Both genes are H3K36me3-enriched, which can explain MMR-mediated elimination of replication errors in wild-type cells. Thus, H3K36me3 can boost MMR in transcriptionally active regions, both locally and globally. This offers an attractive concept of thrifty MMR targeting, where critical genes in each cell type enjoy preferential shielding against de novo mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA