Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Immunol ; 44(4): 88, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578475

RESUMO

The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome , Ubiquitina/metabolismo
2.
Sci Transl Med ; 16(765): eadk0845, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292801

RESUMO

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a life-threatening monogenic autoimmune disorder primarily caused by biallelic deleterious variants in the autoimmune regulator (AIRE) gene. We prospectively evaluated 104 patients with clinically diagnosed APECED syndrome and identified 17 patients (16%) from 14 kindreds lacking biallelic AIRE variants in exons or flanking intronic regions; 15 had Puerto Rican ancestry. Through whole-genome sequencing, we identified a deep intronic AIRE variant (c.1504-818 G>A) cosegregating with the disease in all 17 patients. We developed a culture system of AIRE-expressing primary patient monocyte-derived dendric cells and demonstrated that c.1504-818 G>A creates a cryptic splice site and activates inclusion of a 109-base pair frame-shifting pseudoexon. We also found low-level AIRE expression in patient-derived lymphoblastoid cell lines (LCLs) and confirmed pseudoexon inclusion in independent extrathymic AIRE-expressing cell lines. Through protein modeling and transcriptomic analyses of AIRE-transfected human embryonic kidney 293 and thymic epithelial cell 4D6 cells, we showed that this variant alters the carboxyl terminus of the AIRE protein, abrogating its function. Last, we developed an antisense oligonucleotide (ASO) that reversed pseudoexon inclusion and restored the normal AIRE transcript sequence in LCLs. Thus, our findings revealed c.1504-818 G>A as a founder APECED-causing AIRE variant in the Puerto Rican population and uncovered pseudoexon inclusion as an ASO-reversible genetic mechanism underlying APECED.


Assuntos
Proteína AIRE , Éxons , Íntrons , Oligonucleotídeos Antissenso , Poliendocrinopatias Autoimunes , Fatores de Transcrição , Humanos , Poliendocrinopatias Autoimunes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Íntrons/genética , Feminino , Éxons/genética , Masculino , Splicing de RNA/genética , Adulto , Criança , Adolescente , Linhagem , Linhagem Celular , Sequência de Bases , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA